Fundamentals in Nuclear Physics 原子核基礎

Kenichi Ishikawa (石川顕一)

ishiken@n.t.u-tokyo.ac.jp

Nuclear decays and fundamental interactions

Four fundamental interactions

interaction 相互作用	exchanged particle (gauge boson)	decay 壊変
gravity 重力	graviton 重力子	
weak 弱い相互作用	W±, Z ⁰	beta decay
electromagnetic 電磁相互作用	photon 光子	gamma decay
strong 強い相互作用	gluon グルーオン	
nuclear force 核力	pion and other hadrons	

alpha decay

tunnel effect

壞变 (崩壞) 速度 自然幅 Decay rate, natural width

probability to decay in an interval dt

$$dP = \frac{dt}{\tau} = \lambda dt$$
 decay rate 壞変 (崩壞) 速度 mean life time 平均寿命

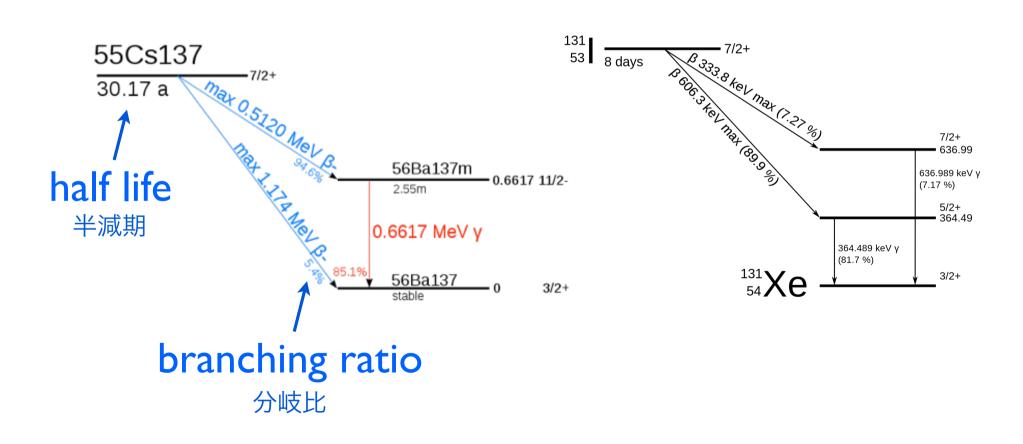

number of unstable nuclei
$$N(t) = N(t=0)e^{-t/ au}$$
 half life 半減期 $t_{1/2} = (\ln 2)\tau = 0.693\tau$ $^7\text{Li}\,(7.459\,\text{MeV}) \to \text{n}^6\text{Li}, \ ^3\text{H}^4\text{He} \quad \tau = 6\times 10^{-21}\,\text{sec}$ $^{76}\text{Ge} \to ^{76}\text{Se}\,2\text{e}^-\,2\bar{\nu}_e \qquad t_{1/2} = 1.78\times 10^{21}\,\text{yr} \quad > \text{IOH} \times \text{(age of universe)}\,!$

An unstable particle has an energy uncertainty or "natural width"

$$\Gamma = \hbar \lambda = \frac{\hbar}{\tau} = \frac{6.58 \times 10^{-22} \,\mathrm{MeV \, sec}}{\tau}$$

分岐比 Branching ratio

• Often, an unstable state (nucleus, isotope) has more than one decay channels.

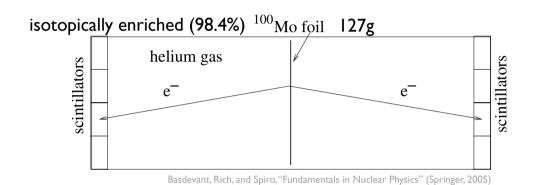

partial decay rate

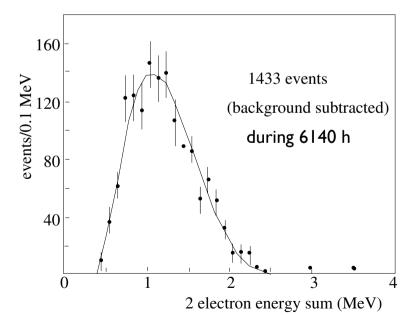
$$\lambda_k = B_k \lambda$$
 $\sum_k \lambda_k = \lambda$

partial width 部分幅

$$\Gamma_k = B_k \Gamma$$

$$\sum_k \Gamma_k = \Gamma$$


_{壊変図} Decay diagram


Measurement of half life

半減期の測定

$\tau > 10^8 \text{ yr } (\alpha \text{ decay, double } \beta \text{ decay})$

- still present on Earth
- can be chemically and isotopically isolated in macroscopic quantity
- detected decays, quantity → lifetime

 $^{100}{
m Mo}
ightarrow ^{100}{
m Ru}\, 2{
m e}^-\, 2ar
u_e$ double eta decay

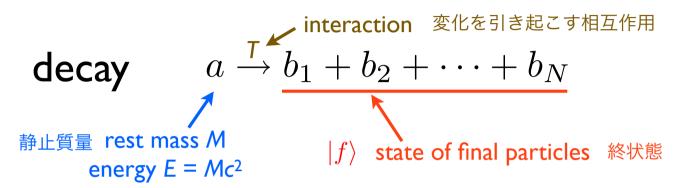
half-life: (0.95±0.11)×1019 yr

Basdevant, Rich, and Spiro, "Fundamentals in Nuclear Physics" (Springer, 2005)

I0 min
$$< \tau < I0^8$$
 yr (α decay, β decay)

- no longer present on Earth and must be produced in nuclear reactions
- purify chemically or isotopically
- detect decays and derive τ

$$10^{-10}$$
 s < τ < 10^3 s (α decay, β decay, γ decay)


- chemical and isotopic purification impossible
- particles produced in nuclear reactions, slowed down, and stopped
- detect decays and derive T

$$\tau < 10^{-10}$$
 s (γ decay, dissociation)

- standard timing techniques not applicable
- a variety of ingenious techniques: Doppler-shift attenuation method, Mössbauer spectroscopy

壊変速度の計算式

Formula for decay rates

decay rate

probability per unit time that a decays into f

粒子 a が単位時間に状態 f に壊変する確率

$$\lambda_{a o f} = rac{2\pi}{\hbar} \left| \langle f | T | a
angle
ight|^2 \delta \left(Mc^2 - \sum_j E_j
ight)$$
 Fermi's golden rule フェルミの黄金則 energy conservation エネルギー保存

Gamma decay ガンマ壊変 (崩壊)

Energetics エネルギーについての考察

unstable high-energy state (stable) low-energy state

$$m_{A*} > m_A$$

$$m_{A*} > m_A$$
 $m_{A*} - m_A \ll m_A$

momentum conservation $p = \frac{E_{\gamma}}{\hat{\ }}$ 運動量保存

$$p = \frac{E_{\gamma}}{c}$$

recoil energy (energy loss)

energy conservation エネルギー保存

$$E_{\gamma} + \frac{p^2}{2m_A} = (m_{A*} - m_A) c^2$$

55Cs137 30.17 a 反跳エネルギー (エネルギー損失) 0.6617 MeV y

 $E_R = \frac{E_{\gamma}^2}{2m_A c^2}$ $m_A c^2 \simeq A \times 931.5 \text{ MeV}$

$$E \sim (m_A - m_A) c^2$$

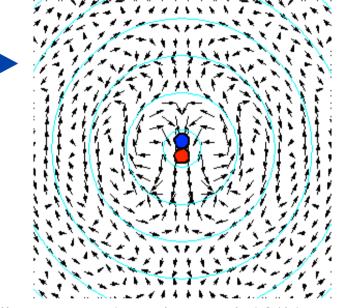
 $E_R \ll E_\gamma \qquad E_\gamma \simeq \left(m_{A*} - m_A \right) c^2 \qquad {
m but} \quad E_R > \Gamma \quad {
m in general}$

Emitted gamma rays are not resonantly re-absorbed by other nuclei in gases

雷気双極子遷移

Electric-dipole transitions

Classical image 古典電磁気学的なイメージ


radiation from an oscillating electric dipole

振動する電気双極子からの古典的な放射

Quantum mechanically 量子力学的には

rate
$$\lambda_{i \to f} = \frac{4\alpha}{3} \frac{q^2}{e^2} \frac{E_{\gamma}^3}{\hbar^3 c^2} \left| \langle f | \mathbf{r} | i \rangle \right|^2$$

fine-structure constant
$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \simeq \frac{1}{137}$$
 微細構造定数 $\langle f|\mathbf{r}|i\rangle = \int d^3\mathbf{r}\,\psi_f^*(\mathbf{r})\mathbf{r}\psi_i(\mathbf{r})$

http://www.eto.titech.ac.ip/contents/sub04/chapter02.html

Atomic transition

$$\hbar\omega \sim \text{eV} \quad \langle r \rangle \sim 10^{-10} \,\text{m} \quad \tau \sim 10^{-9} - 10^{-7} \,\text{s} \quad \Gamma = \hbar/\tau \sim 10^{-7} \,\text{eV} \ll \hbar\omega$$

 $\gg E_R = E_\gamma^2/(2m_A c^2) \sim 10^{-9} \,\text{eV}$

$$\langle r \rangle \sim A^{1/3} 10^{-15} \,\mathrm{m}$$

Nuclear transition
$$\langle r \rangle \sim A^{1/3} 10^{-15} \, \mathrm{m}$$
 \longrightarrow $\lambda(E1) \sim \frac{\alpha E_{\gamma}^3}{\hbar} \left(\frac{A^{1/3} \, \mathrm{fm}}{\hbar c} \right)^2$

$$E_{\gamma} \sim \text{MeV} \quad \tau \sim 10^{-17} - 10^{-15} \,\text{s} \quad \Gamma \sim 10 \,\text{eV} \ll E_{\gamma}$$

多重極遷移

Higher multi-pole transitions

Often, electric-dipole (EI) decay is forbidden. $\langle f|\mathbf{r}|i\rangle=0$

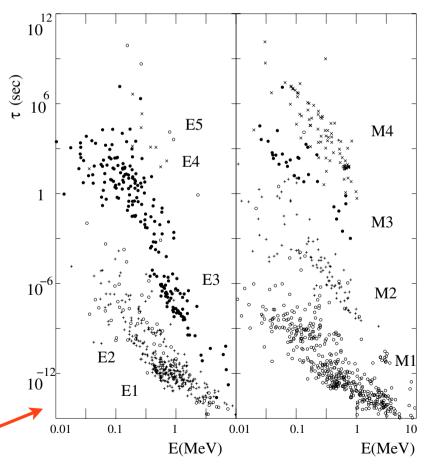

may still decay radiatively by higher-order and slower processes

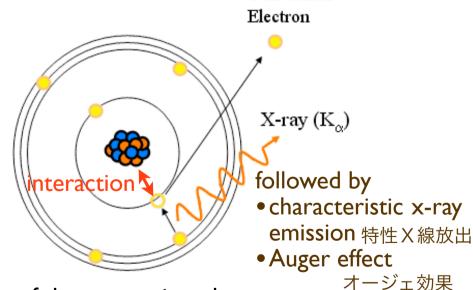
Table 4.1. Selection rules for radiative transitions

type	symbol	angular momentum change $ \Delta J \leq$	parity change
electric dipole magnetic dipole electric quadrupole magnetic quadrupole electric octopole magnetic octopole electric 16-pole magnetic 16-pole	E1 M1 E2 M2 E3 M3 E4 M4	1 1 2 2 2 3 3 4 4	yes no no yes yes no no yes

Basdevant, Rich, and Spiro, "Fundamentals in Nuclear Physics" (Springer, 2005)

Lifetime of excited nuclear states as a function of E_V for various multipoles

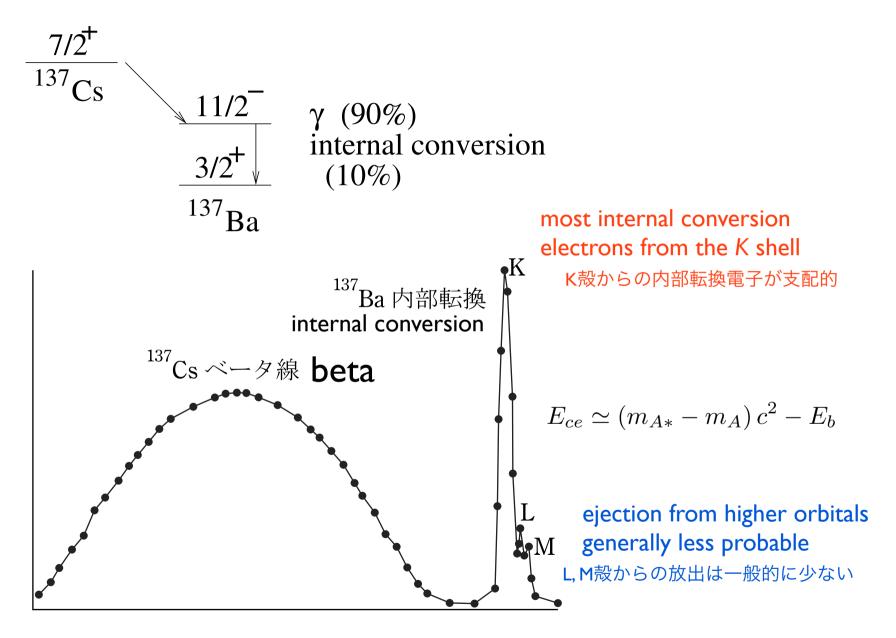
Basdevant, Rich, and Spiro, "Fundamentals in Nuclear Physics" (Springer, 2005)


Internal conversion

An excited nucleus can interact with an electron in one of the lower atomic orbitals, causing the electron to be emitted (ejected) from the atom.

s-electrons have finite probability density at the nuclear position.

s軌道の電子は、原子核の位置で存在確率が有限 for a hydrogen atom 18 水素原子の例 2 3 probability density 2s 0.2 0.1 0.0^E. 0.020 **2**p 0.015 0.010 0.005 3s 0.12 0.08 0.04 0.00 r (atomic unit)


The electron may couple to the excited state of the nucleus and take the energy of the nuclear transition <u>directly</u>, <u>without an intermediate gamma ray</u>.

Conversion

Energy of the conversion electron

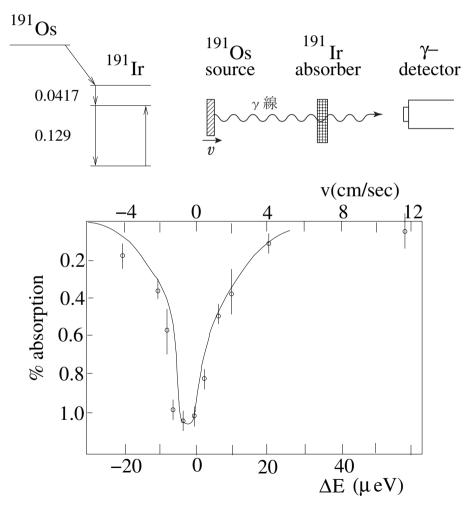
$$E_{ce} \simeq \left(m_{A*} - m_A\right)c^2 - E_b \simeq E_\gamma - E_b$$
 binding energy of the electron

電子運動量 electron momentum

メスバウアー効果 Mössbauer effect

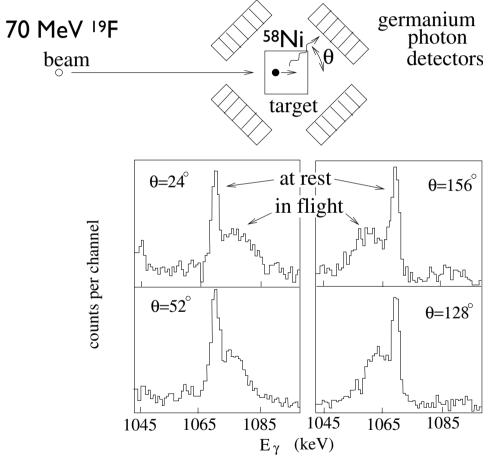
recoil energy (energy loss)
$$E_R = \frac{E_\gamma^2}{2m_Ac^2}$$

Emitted gamma rays are not resonantly re-absorbed by other nuclei in gases.



Inverse transition (resonant re-absorption) possible when

- nuclear recoil is suppressed in a crystal ("very very large m_A ") \leftarrow Mössbauer effect (discovered in 1957)
- the excited nucleus decays in flight with the Doppler effect compensating the nuclear recoil


メスバウアー分光による寿命測定

Mössbauer spectroscopy

Basdevant, Rich, and Spiro, "Fundamentals in Nuclear Physics" (Springer, 2005)

Doppler-shift attenuation method

Basdevant, Rich, and Spiro, "Fundamentals in Nuclear Physics" (Springer, 2005)

⁷⁴Br 1068 keV gamma-ray

0.25 ps lifetime

メスバウアー効果 ドップラーシフト **Mössbauer effect + Doppler shift**

一般相対性理論の検証

by Pound and Rebka, 1959

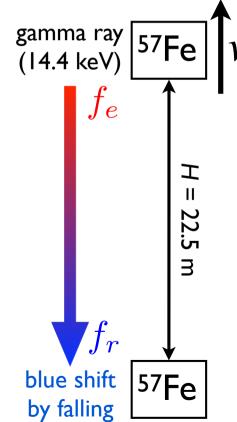
Test of Albert Einstein's theory of general relativity

• Gravitational red shift of light

• Clocks run differently at different places in a gravitational field

Gravitational shift

$$h(f_r - f_e) = mgH$$


$$hf_e = mc^2$$

$$\frac{f_r}{f_e} = 1 + \frac{gH}{c^2}$$

Doppler shift

$$\frac{f_r}{f_e} = \sqrt{\frac{1 - v/c}{1 + v/c}} \approx 1 - \frac{v}{c}$$

$$v = \frac{gH}{c} = 7.36 \times 10^{-7} \,\text{m/s}$$

Jefferson Laboratory (Harvard University)

https://en.wikipedia.org/wiki/ Pound%E2%80%93Rebka_experiment

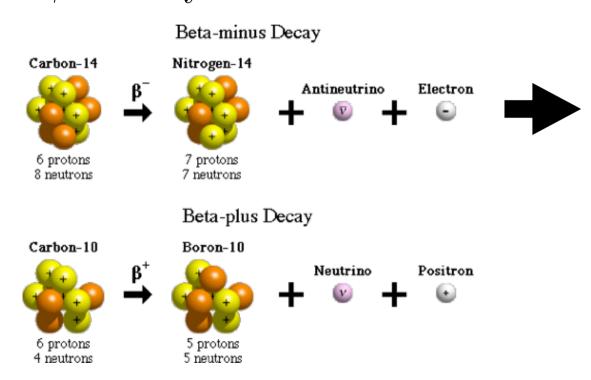
Weak interaction and beta decay

弱い相互作用とベータ壊変(ベータ崩壊)

Four fundamental interactions

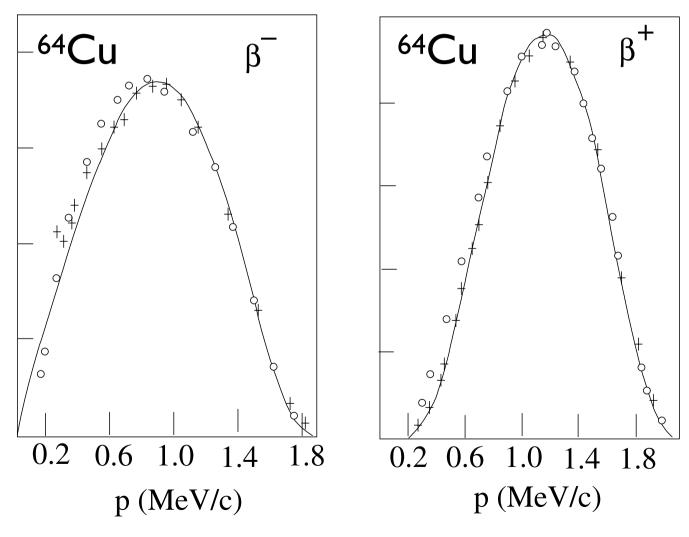
interaction 相互作用	exchanged particle (gauge boson)	decay 壊変
gravity 重力	graviton 重力子	
weak 弱い相互作用	W±, Z ⁰	beta decay
electromagnetic 電磁相互作用	photon 光子	gamma decay
strong 強い相互作用	gluon グルーオン	
nuclear force 核力	pion and other hadrons	

alpha decay


tunnel effect

half life = 5730 years

dating 年代測定


beta decay

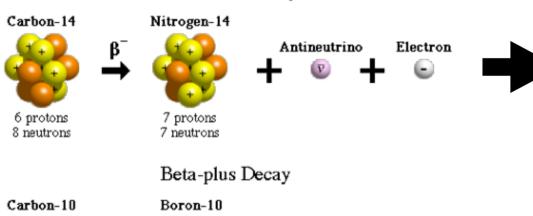
$$\beta^-$$
 decay $Z^A N \to A_{Z+1} N' + e^- + \bar{\nu}_e$
 β^+ decay $Z^A N \to A_{Z-1} N' + e^+ + \nu_e$

https://www.slideshare.net/yschhabra/radioactivity-45823825

Emitted electron (positron) energy has a broad distribution

б protons

beta decay


Positron

$$\beta^- \operatorname{decay}$$
 $\stackrel{A}{Z}N \to \stackrel{A}{Z}_{+1}N' + e^- + \bar{\nu}_e$
 $\beta^+ \operatorname{decay}$ $\stackrel{A}{Z}N \to \stackrel{A}{Z}_{-1}N' + e^+ + \nu_e$

Beta-minus Decay

5 protons

5 neutrons

half life = 5730 years dating 年代測定

The existence of the neutrino was predicted by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum.

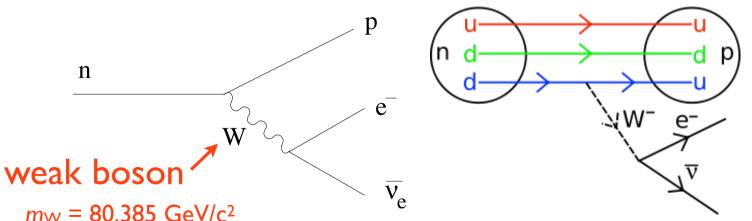
Neutrino

Pauli

fundamental processes

$$n \to p e^- \bar{\nu}_e$$

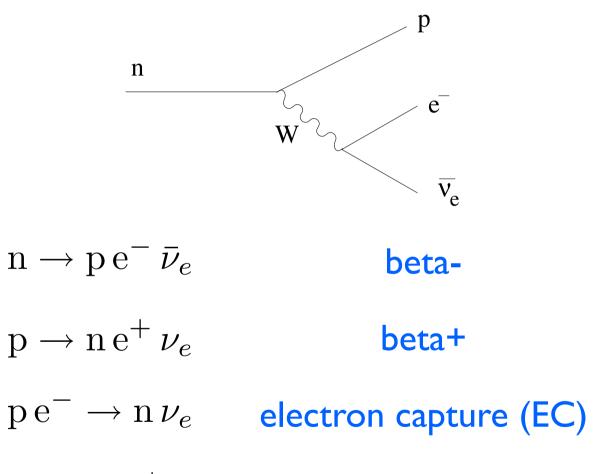
 $m_p = 938.3 \text{ MeV/c}^2 < m_n = 939.6 \text{ MeV/c}^2$


mean life = $881.5 \pm 1.5 s$

$$p \to n e^+ \nu_e$$

- free proton does NOT decay
- takes place only in nuclei

Feynman diagram


ファインマン図

https:// commons.wikimedia.org/wiki/ File:Richard_Feynman_I988.p

cf. $m_{pion} = 139.570 \text{ MeV/c}^2$ (±), 134.9766 MeV/c² (neutral)

By transforming the Feynman diagram ...

neutrino detection

 $\bar{\nu}_e \, \mathrm{p} \rightarrow \mathrm{e}^+ \, \mathrm{n}$

Fermi theory of beta decay

Decay rate

$$w=rac{2\pi}{\hbar}\left|\langle\psi_{
m p}\psi_{
m e}|H_{eta}|\psi_{
m n}\psi_{
u}
angle
ight|^{2}rac{dn}{dE}$$
 Fermi's golden rule density of state $\%$ state $\%$ ensity of state $\%$ for $\%$ for $\%$ for $\%$ and $\%$ for $\%$

$$\approx \int e^{-ik_{\rm p}\mathbf{r}_2}e^{-ik_{\rm e}\mathbf{r}_2}H_{\beta}\left(\mathbf{r}_2-\mathbf{r}_1\right)e^{ik_{\rm n}\mathbf{r}_1}e^{ik_{\nu}\mathbf{r}_1}dV$$

weak interaction is a short-range force $H_{eta}({f r}_2-{f r}_1)\sim G\delta({f r}_2-{f r}_1)$

$$H_{\beta}(\mathbf{r}_2 - \mathbf{r}_1) \sim G\delta(\mathbf{r}_2 - \mathbf{r}_1)$$

$$\approx G$$

Electron energy distribution dominated by density of state

放出される電子のエネルギー分布は状態密度で 決まる

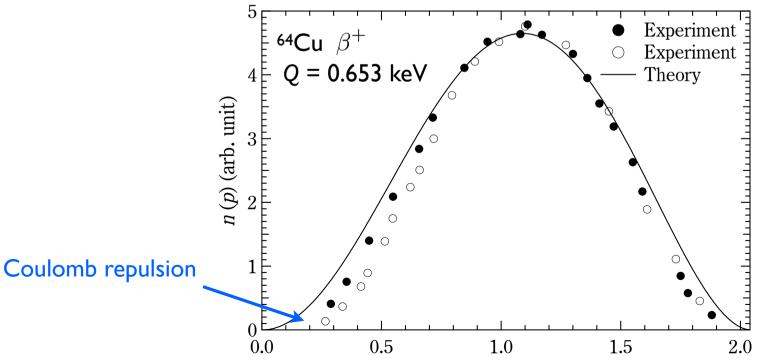
Density of state 状態密度

assuming plane waves

$$dn \propto p^2 dp q^2 dq$$

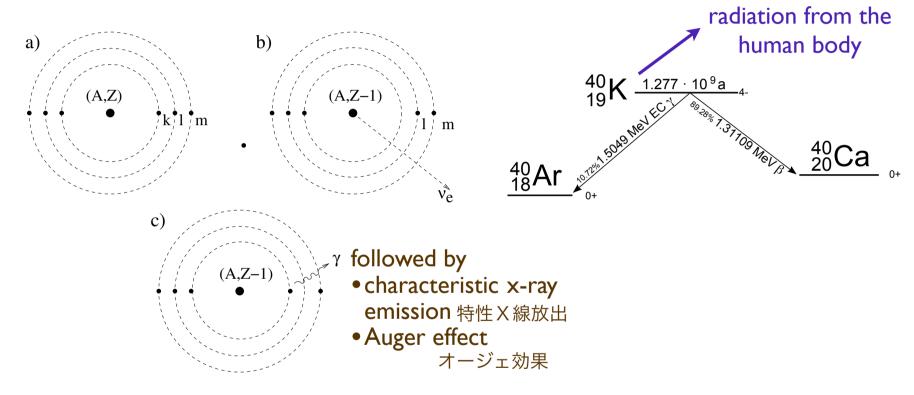
p : electron momentum

q : neutrino momentum


energy
$$Q=E_e+E_{
u}$$

energy
$$Q = E_e + E_{\nu}$$
 $E_{\nu} = cq$ $E_e = \sqrt{m_e^2 c^4 + p^2 c^2}$

$$dE = dE_{\nu} = cdq$$


$$rac{dn}{dE} \propto p^2 q^2 dp \propto (Q - E_e)^2 p^2 dp$$
 statistical factor 統計因子

 $p/m_e c$

電子捕獲(軌道電子捕獲)

Electron capture (EC)

$${}_{Z}^{A}N + e^{-} \rightarrow {}_{Z-1}^{A}N' + \nu_{e}$$

fundamental process: ${
m p\,e^-}
ightarrow {
m n}\,
u_e$

neutrino energy: $E_{\nu} = M(A,Z)c^2 - M(A,Z-1)c^2$

atomic mass (not nuclear mass)

β+ decay and electron capture

$$eta^+$$
 decay $Z^A N o Z^A = 1 N' + e^+ + \nu_e$
$$M_N(A,Z)c^2 > M_N(A,Z-1)c^2 + m_e c^2$$
 nuclear mass

electron capture
$${}^A_ZN+e^- o {}^A_{Z-1}N'+
u_e$$
 $M_N(A,Z)c^2>M_N(A,Z-1)c^2-m_ec^2$

Both may not always be energetically possible!

Symmetry and conservation law

対称性と保存則

no change under a transformation Any symmetry of a physical law has a

corresponding conservation law

Noether's theorem ネーターの定理

symmetry	conserved quantity
temporal translation	energy
spatial translation 平行移動	momentum
rotation 回転	angular momentum
reflection r→-r (P) 空間反転	parity
time reversal (T) 時間反転	T-parity
charge conjugation (C) 粒子反粒子変換	C-parity
gauge invariance ゲージ不変性	electric charge

https://ja.wikipedia.org/wiki/エミー・ネーター

Example: Coulomb force

$$V(\mathbf{r}) = \frac{q_1 q_2}{4\pi\epsilon_0 |\mathbf{r}|^2}$$

$$V(\mathbf{r}) = \frac{q_1 q_2}{4\pi\epsilon_0 |\mathbf{r}|^2} \quad \text{or} \quad V(\mathbf{r}_1, \mathbf{r}_2) = \frac{q_1 q_2}{4\pi\epsilon_0 |\mathbf{r}_1 - \mathbf{r}_2|^2}$$

example in the classical mechanics

Hamilton equations

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

If the Hamiltonian does not explicitly depend on q_i (invariant under the spatial translation)

$$\dot{p}_i = 0$$
 Conservation of momentum $\dot{p}_i = \cos t$

gauge invariance ゲージ不変性

$$\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi$$

invariant under the gauge transformation

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} + \nabla \chi, \quad \phi' = \phi - \frac{\partial \chi}{\partial t}$$

Invariance of the Action S 作用素積分

Conservation of the electric charge

$$rac{\partial
ho}{\partial t} +
abla \cdot \mathbf{j} = 0$$

Parity

reflection

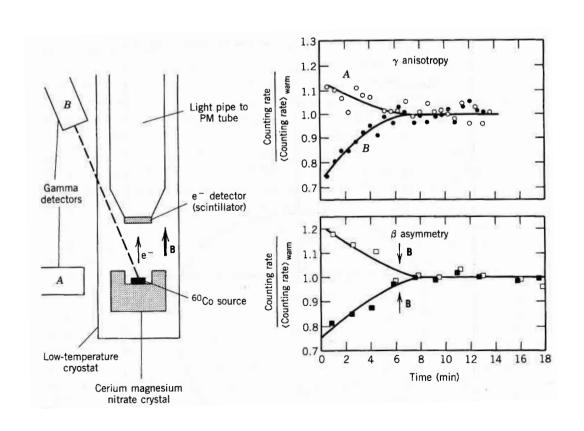
$$\hat{\pi}\psi(\mathbf{r}) = \psi(-\mathbf{r})$$

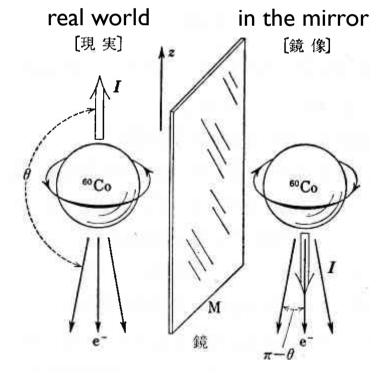
$$\hat{\pi}^2\psi(\mathbf{r}) = \psi(\mathbf{r})$$
 Eigenvalues $\rightarrow \pm 1$

If the physical law is invariant under the reflection (gravitational, electromagnetic, and strong interaction)

$$i\hbar \frac{\partial}{\partial t} \hat{\pi} \psi = H \hat{\pi} \psi \qquad i\hbar \frac{\partial}{\partial t} \hat{\pi} \psi = \hat{\pi} H \psi$$

$$\hat{\pi} H = H \hat{\pi} \qquad \qquad \hat{\pi} [\hat{\pi}, H] = 0$$

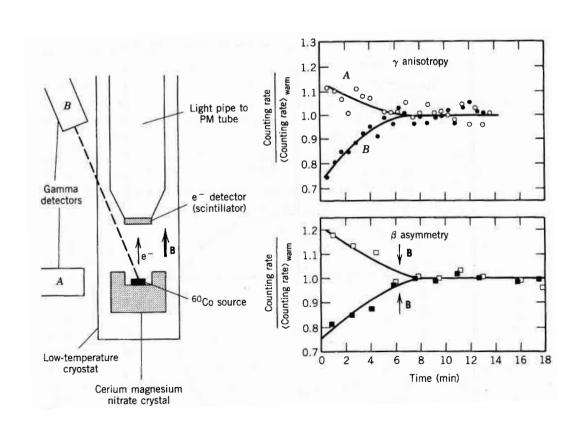

Heisenberg's equation of motion

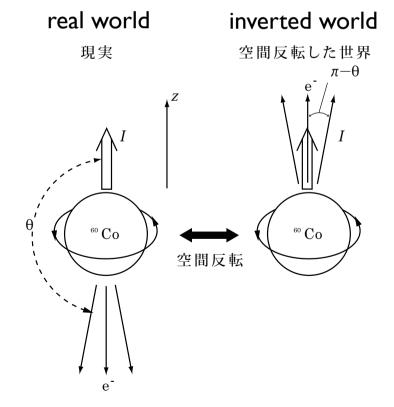

$$i\hbar \frac{d\hat{\pi}}{dt} = [\hat{\pi}, H] = 0$$
 Conservation of parity

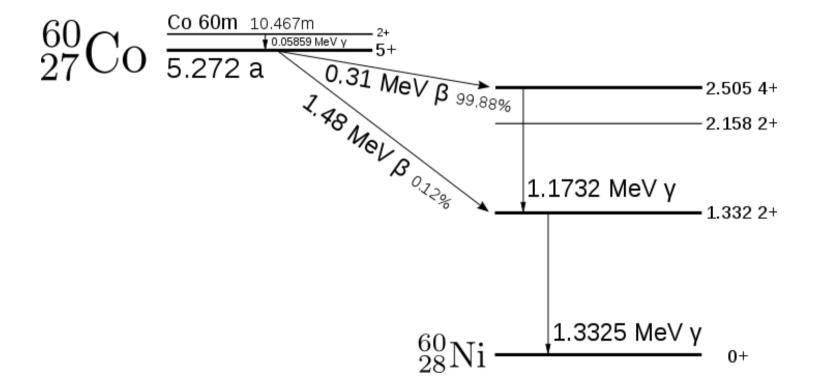
parity violation パリティ非保存 nonconservation of parity

in the weak interaction

- Prediction by T.-D. Lee and C. N. Yang in 1956
- Experimental verification by C.S.Wu in 1957




八木浩輔「原子核物理学」


parity violation パリティ非保存 nonconservation of parity

in the weak interaction

- Prediction by T.-D. Lee and C. N. Yang in 1956
- Experimental verification by C.S.Wu in 1957

https://en.wikipedia.org/wiki/ Tsung-Dao Lee

Lee

6 3 0

https://en.wikipedia.org/wiki/ Yang_Chen-Ning

Yang

 $https://en.wikipedia.org/wiki/Chien-Shiung_Wu$

Nobel prize in physics (1957)

CP violation

https://en.wikipedia.org/wiki/Makoto_Kobayashi_(physicist)

https://en.wikipedia.org/wiki/Toshihide Maskawa

Makoto Kobayashi

Toshihide Maskawa

Nobel prize in physics (2008)

CPT theorem

CPT定理

- Preservation of CPT symmetry by all physical phenomena
- Any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry