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Nonlinear optical response of graphene in time domain
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We study nonlinear optical response of electron dynamics in graphene to an intense light pulse within the
model of massless Dirac fermions. The time-dependent Dirac equation can be cast into a physically transparent
form of extended optical Bloch equations that consistently describe the coupling of light-field-induced intra-
band dynamics and interband transitions. We show that the nonlinear optical response is not sufficiently
described neither by pure intraband nor by pure interband dynamics but their interplay has to be taken into
account. When the component of the instantaneous momentum parallel to the field changes its sign, the
interband transition is strongly enhanced and considerably influences the intraband dynamics. This counteracts
anharmonic response expected from purely intraband dynamics and relaxes nonlinearly. Nevertheless,

graphene is still expected to exhibit nonlinear optical response in the terahertz regime such as harmonic

generation.
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Despite its short history after the first intentional
production,! there is rising interest in graphene over a wide
spectrum of fields including materials, condensed-matter, op-
tical, high-field, and high-energy science because of their
potential application in carbon-based electronics as well as
possibility to mimic and test quantum relativistic
phenomena.?? While unique properties such as finite conduc-
tivity at zero carrier concentration* and ac and dc universal
conductance’ are predicted and observed, the interest in the
optical response of graphene is even further boosted by re-
cent progress of terahertz (THz) radiation technology, which
is another frontier research area.® The generation of ul-
trashort (from a few cycles even down to a single cycle)
high-intensity [>100 MV/cm at 30 THz (Ref. 9) and
70 kV/cm at 1 THz (Ref. 10)] pulses has been reported, and
even THz generation is possible from laser-irradiated
graphite.!! This will open up a new field of high-field physics
in condensed matter. Along these lines the nonlinear optical
response of graphene, such as induced current nonlinear in
field strength and harmonic emission is becoming one of the
key issues.!>"'® Using a quasiclassical kinetic approach but
ignoring interband transitions, Mikhailov and Ziegler!? pre-
dicted strong nonlinear response while Wright et al.'> have
performed Fourier analysis of the time-dependent Dirac
equation (TDDE).

In this Rapid Communication, we study the time-domain
nonlinear dynamics of the electric current induced in
graphene by an ultrashort intense optical field, starting from
the (2+ 1)-dimensional TDDE for massless fermions. Special
emphasis is placed on the interplay between intraband and
interband dynamics, which we describe with a set of ex-
tended optical Bloch equations (EBOEs) derived from the
TDDE. The analysis using our model indicates that the in-
duced current is dominated by the intraband dynamics but
significantly affected by interband transitions. The underly-
ing mechanism is that the latter is strongly enhanced when
the instantaneous kinetic momentum of the electron passes
near the Dirac point. This results in reduction in nonlinearity.

Let us first study the response of a single electron in
graphene under an in-plane applied field E(r) polarized along
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the x axis. To this end, we begin with the TDDE for the
two-component wave function i,

. d 0 pe”i® 1+ eA(r) )
lhazl’/,_vp<pei‘/’+ eA(t) 0 ’ )
where vy~ c¢/300, p denotes the magnitude of the canonical
momentum p=(p,,p,), ¢ the directional angle satisfying
py=p cos ¢ and p,=p sin ¢, e(>0) the elementary charge,
and A(¢)=—[E(t)dt the vector potential of the field. We first
examine the case where p is parallel to the field, i.e., p,=0.
In this case, Eq. (1) has the following two analytic solutions:

1) = \%exp<_ l%FJ [P+ eA(t)]dt) (1 ) 2)

1,b(t)=\}—zexp(i%p f [px+eA(t)]dt><_1l). (3)

It can be easily shown that, for each branch, the current
j=(jx’jy)=UF¢TO'¢ is given by

J= (UF’O) and j=(- UFaO), (4)

respectively. Thus, j remains constant, i.e., shows no re-
sponse. This holds true even when the instantaneous kinetic
momentum p,+eA(t) passes by the Dirac point [p,+eA(r)
=0] (Fig. 1). Remarkably, this result indicates that instanta-
neous and complete population inversion takes place at the
Dirac point irrespective of the frequency, strength, and form
of the applied field.

Let us now extend the above discussion to the general
case of momentum p. No simple analytic solutions are at
hand for p, # 0. Equations (2) and (3), however, invite us to
make the following ansatz:

1) = ¢, (), (1) + c_() (1) (5)
with
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FIG. 1. (Color online) Schematic representation of the dynamics
of a single Dirac fermion with p,=0, whose field-free state is
marked by a filled circle, under an intense optical-field polarized
along the x axis. The bold double-sided arrow corresponds to the
variation in the kinetic momentum. A, denotes the amplitude of the
vector potential. When the electron arrives at the Dirac point, it
does not stay in the same band but moves to the other band. The
transition is instantaneous and total.

1 —(i12) 6(t) )

(1) = V,_EGXP[: lQ(l)J( + pli2)6)

(6)

where the instantaneous temporal phase )(7) is defined as

vr e F T a2 o
Q=7 p.+ eA() >+ pidt and 6(¢) denotes the directional
angle of vector [p,+eA(1),p,]. Substituting Egs. (5) and (6)
into Eq. (1), we obtain, as temporal variation in the expan-
sion coefficients c.(r),

¢ (1) = SO (0™, (7)
Introducing the interband coherence p=c,c’ and population

difference n=|c,|>~|c_|?, one can rewrite Eq. (7) into a form
of extended optical Bloch equations

pz_éananémm, 8)

n=—i0()p()e ¥ +c.c. 9)

While Egs. (7)—(9) basically describe interband transitions,
they incorporate the field-induced intraband dynamics
through (¢) and 6(7) and are physically more transparent
than the TDDE. At the same time, they are totally equivalent
with the TDDE involving no approximation. The electron
dynamics described by the EOBEs may be experimentally
probed, e.g., by time-resolved pump-probe photoemission
spectroscopy.'® Finally, the current is given by

jr=vgn cos O+isin Gpe > —c.c}], (10)

Jy=vgln sin 6—i cos 6pe ™ —c.c}], (11)

where the first and second terms correspond to the contribu-
tion from the intraband current and interband polarization,
respectively. For p,=0, by noting that () switches between
0 and 7 in a stepwise manner at p,+eA(f)=0, one can show
that n(r) switches between —1 and 1, and recover Eq. (4).
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FIG. 2. (Color online) Temporal evolution of the

population difference n(z) between the upper and lower states for
pileAy==314, hwl/veAy=9.46X 10~ and different values of
Pyl eA calculated using the EBOESs, except for the case of p,=0,
where extracted from Eq. (2). Also, [p,+eA(t)]/eA is plotted in a
thin solid line (right axis).

In order to gain insight into how the Dirac fermion be-
haves when p,+eA(f) changes its sign, let us consider the
first few cycles of a flat-top pulse with a half-cycle ramp on

0 (r<0)
wl
A()=VAy—sin ot (0=1< 7w) (12)
T
Agsinwt  (mow=t),

where Ay>|p,|. We numerically solve the EBOEs for an
electron initially in the lower band using the Bulirsch-Stoer
method with adaptive stepsize control,”® for parameters
peAg==3/4, hw/vreAy=9.46 X 107 (corresponding, e.g.,
to radiation of 1 THz frequency with a field strength of 27.5
kV/em and vpp,=-0.33 eV), and for different values of
py/ eAy. It should be noted that the coupling element,

o pyeE(t)
M= s eA) P+ 77 ()

is nonlinear in E(t) and especailly when p,/eA is small
(=0.1), strongly peaks within a narrow time window around
p+eA(r)=0. This leads to a quasisteplike population transfer
when p,+A(f) changes its sign while n(r) is virtually con-
stant otherwise (Fig. 2). The enhanced interband transitions
take place even when the gap between the hole and electron
states are much larger than the photon energy; the gap is,
e.g., 10.6iw for p,/eA;=0.05. For p,/eA;=0.2, practically
there is no transition.

If we neglected the interband transition, the current j,
would be, by setting n=—1 and p=0 in Eq. (10),

. Pyt eA()
D e AP+ 2 1

which would be nonlinear in A(r) when |eA(t)|>|p,|,|p,|.
Thus, one might speculate that graphene would exhibit
strongly nonlinear response.'?> However, we have seen above
that the interband transition becomes non-negligible exactly
for such conditions. Figure 3 compares the evolution of j,
calculated with and without the interband transition. For p,
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FIG. 3. (Color online) Temporal evolution of the normalized
single-electron current j,(r)/ vy for the same parameters as in Fig. 2
and three different values of p,/eA. Thick solid line: from Eq. (4)
for (a) and using the EBOE Egs. (8)—(10) for (b) and (c), thin solid
line: calculated using the TDDE, and dashed line: calculated by
switching off the interband transitions, i.e., setting n=—1 and p=0
in Eq. (10) all the time.

=0, the interband transition completely cancels the abrupt
change expected from purely intraband dynamics. For finite
but small values of |py/ eAy|, the temporal variation in j, is
reduced but still showing nonlinear behavior. In addition, we
can see rapid oscillation <e=22") duye to interband polariza-
tion. In this figure, we also confirm that the results from Eq.
(4) and the EBOEs are indisinguishable from those of direct
numerical solution of the TDDE.

So far we have focused on the response of a single

Dirac fermion. To take into account the Fermi
distribution, we solve Egs. (8) and (9) with initial
conditions n=F(p)-F(-p) and p=0, where

F(p)={1+exp[(vpp—pu)/kgT]}" is the Fermi-Dirac function
with w, kz, and T being the chemical potential, Boltzmann
constant, and temperature, respectively. Then, the total inte-
grated electric current J(r) is given by

gsgl)e 0
f)=— >0 tdp, 15
J(®) (ZM)ZIJC()p (15)
where g,=2 and g,=2 denote spin- and valley-degeneracy
factors, respectively. The carrier current j,. is to be calculated
by replacing n with the carrier occupation n+1 in Egs. (10)
and (11), i.e.,

Jex=vpl(n+1)cos O+isin Gpe > —c.c}], (16)

Jey=vi(n+ 1sin 6—icos Hpe @ —cc}].  (17)

Several remarks are in order. J, vanishes if the momentum
distribution is symmetric with respect to py=0, which is usu-
ally the case. The whole dynamics is invariant under multi-
plication of quantities of energy dimension, Aw, vpp, vpeA,
M, kgT, and 7/t by a common factor. In the weak-field limit,
one can derive the universal conductivity e*/4#% from Egs.
(15) and (16).
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FIG. 4. (Color online) (a) Normalized vector potential
vpeA(t)/ ho of the incident optical pulse. (b) Temporal evolution of
the normalized integrated electric current J,/eng . Thick solid line:
total current calculated with Egs. (15) and (16), thin solid line:
contribution from the interband polarization, and thick dotted line:
calculated by switching off the interband transitions, i.e., keeping
the initial values of n and p(=0) in Eq. (16) all the time. Labels A
and B are referred to in Fig. 5.

As an example, let us consider the case where T7T=0
and w=vpeAy/5. The vector potential A(z) is assumed
to be a sine pulse with a Gaussian intensity envelope
whose full width at half maximum corresponds to
two optical cycles and peak amplitude A, satisfies
ho/vpeA;=9.46X 107 as in Figs. 2 and 3 [Fig. 4(a)].
Figure 4(b) displays the normalized current J,/enwy with
ny=(g,g,1%)/ (4h?v%) being the electron density in the up-
per cone. If we considered only the intraband dynamics (dot-
ted line), |J,/en,v;| would saturate at unity, which would
imply strong nonlinearity.'!? This behavior can be understood
by visualizing the carrier occupation distribution at moments
A and B marked in Fig. 4 [Figs. 5(a) and 5(b)]. Since the
carrier density is fixed and the magnitude of the velocity vy
is independent of momentum, |J,/en,| could not exceed v.
However, in reality, electrons in the lower band transfers to
the upper band when they pass near the Dirac point. As a
result, we can see substantially more charge carriers at mo-
ment B than A [Figs. 5(c) and 5(d)]. This leads to larger
electric current at B and its temporal wave form becomes
less anharmonic [thick solid line in Fig. 4(b)].

Nonlinear optical response may typically be observed
through harmonic generation (frequency multiplication). In
Fig. 6 we plot the harmonic intensity spectrum of the coher-
ently emitted radiation /(w) given by

() = |wJ(w)]. (18)

As expected from the previous discussion, the height of the
harmonic peaks (thick solid line) is reduced compared with
the case of the pure intraband dynamics (thick dotted line).
Nevertheless, harmonic generation of up to the 13th order
can be seen. It is worth noting that, although the contribution
from the interband polarization, i.e., the second term of Eq.
(16) is small (thin solid lines in Figs. 4 and 6), the interband
dynamics strongly modify the optical response of graphene.
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FIG. 5. (Color online) Carrier occupation distribution calculated
by switching [(a) and (b)] off and [(c) and (d)] on the interband
transitions. (a) and (c) are for the moment labeled as A in Fig. 4 and
(b) and (d) for B.

In conclusion, the time-dependent Dirac equation for
massless Dirac fermions can be transformed into a set of
extended optical Bloch equations, which are equivalent with
the TDDE for a single electron and, at the same time, pro-
vide us with clear physical insights, consistently describing
the interplay of the intraband and interband temporal dynam-
ics. We have found that, if the component of the electron
momentum perpendicular to the field polarization (p, in this
study) is much smaller than eA,, the interband transition is
significantly enhanced when the instantaneous momentum
p.+eA(r) changes its sign. The transition is nonresonant and
proceeds within a fraction of optical cycle. Especially for
py=0, instantaneous and complete population transfer takes
place at the Dirac point. At the single-electron level, the en-
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FIG. 6. (Color online) Harmonic intensity spectra for the case of
Fig. 4. Thick solid line: total spectrum calculated with Eq. (18), thin
solid line: contribution from the interband polarization, and thick
dotted line: calculated by switching off the interband transitions.

hanced interband dynamics relaxes abrupt change in current
which would be expected from pure intraband dynamics. Af-
ter integrating over the Fermi-Dirac distribution, this leads to
increase in charge carriers, which reduces nonlinearity in the
electric current. Nevertheless, graphene is still expected to
show nonlinear optical response such as harmonic genera-
tion. It will be straightforward to introduce additional effects
such as relaxation and dephasing in the present model
(EOBEs), which will be a subject of our next research. Time-
domain approaches such as presented here will be increas-
ingly important, in view of recent progress in few-cycle op-
tical pulse technique.®'?
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