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Attosecond cascades and time delays in one-electron photoionization
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We present time-resolved ab initio study of the attosecond dynamics of electron-electron correlation during
single-electron, single XUV-photon ionization of an excited helium atom. We identify multiple time scales in
these dynamics, caused by the interplay of the initial shake-up excitation with the excitation cascades induced by
the postionization interaction of the outgoing electron with the core. The time scales and the structure of these
excitation cascades are directly linked to the time it takes the “active” continuum electron, lifted from a deeper
bound orbital, to traverse the orbit of the “passive” electron residing in the outer orbit.
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Experiments on time-resolving photoionization dynamics
have now reached the level of few tens to few attoseconds
[1–4], putting attosecond-resolved analysis of electron-
electron correlations firmly within reach. First experiments
brought first surprises, indicating long apparent time delays
[3,4] in photoionization, inconsistent with predictions of the-
oretical calculations [3,5]. Possible causes for the discrepancy
have been scrutinized theoretically [3–10], including the effect
of the measurements, which relied on using the so-called
attosecond streak camera [11,12] or the reconstruction of
attosecond beating by interference of two-photon transitions
(RABBIT) [13] techniques. While even the most complete
simulations to date [10] are still about a factor of 2 short of the
experiments [3], these studies have brought to the focus rich
correlation-driven dynamics that contribute to photoionization
delays [5,10,14–16].

Our goal is to directly visualize and analyze these
correlation-driven dynamics using a simpler benchmark sys-
tem, helium, and an even simpler model system. In both cases,
we setup the initial conditions such that correlation-driven
dynamics is brought to the fore. The relative simplicity of ab
initio calculations in these systems, compared to the tour de
force calculations for neon [10], allows for a detailed analysis
of the underlying physics. We present the full treatment
of the excited He atom and results for a one-dimensional
(1D) two-electron model. In the latter case, electrons are
restricted to a single degree of freedom each, and the
electron-electron and electron-nucleus Coulomb interactions
are softened (the two-electron model atom introduced by
Eberly and coworkers [17]). Despite obvious limitations, the
computational efficiency of the 1D model is very useful in
investigating the interplay of different physical processes.
Full-dimensional calculations for helium confirm conclusions
drawn from the 1D model.

We prepare our systems in the excited states which have a
predominantly one-electron excitation character, so that one
of the two electrons is deeper bound than the other. We then
perform exact numerical simulations of the nonrelativistic
time-dependent Schrödinger equation (TDSE) and follow the
dynamics of ionic excitations during one-photon, one-electron
ionization by an attosecond XUV pulse. As a rule, the
dynamics are initiated by the deeper bound electron, which
is more likely to absorb the high-frequency photon. We can

then look directly at the response and relaxation dynamics of
the excited ionic subsystem initiated by the activation of the
inner electron. The analysis is done in a time domain after the
end of the laser pulse. Consequently, our conclusions about
the underlying physics are gauge independent.

First, we observe two distinctly different excitation time
scales. The first is associated with the shake-up, which
is essentially instantaneous. The second is associated with
the postionization interaction leading to the “knock-up” and
“knock-down” transitions after the end of the laser pulse. These
transitions are (somewhat) analogous to the two-step-one
(TS1) process in double photoionization [18] and involve an
energy exchange between the two electrons after the absorption
of the XUV photon. The plausibility of different time scales
for the shake-up and the knock-up transitions has been pointed
out by Kheifets [19].

Second, we show that the time scales of the knock-up
and knock-down transitions are directly linked to the time it
takes the “active” electron, lifted from the deeper lying orbital
by photon absorption, to traverse the cloud of the “passive”
electron residing on the outer orbit. We show that the temporal
structure of the transitions maps the space-dependent charge
density of the passive electron orbitals. Depending on the
initial state of the passive electron and the energy of the active
electron, the relevant time scales can easily approach 102 asec.
Thus our fully quantum analysis reveals the simple underlying
semiclassical picture.

Third, we find that different time scales of the shake-up
and the knock-up or knock down transitions lead to the
appearance of excitation cascades. The initial shake-up
excitation is followed by one or more transitions between the
excited states after the end of the ionizing pulse, as the passive
electron is pushed by the active one. Thus, the time-domain
approach helps one to assess the physical reality of the
processes described by different diagrams in the many-body
perturbation theory.

For the 1D-He atom [17], the Coulomb interaction is
softened by the parameters a and b (atomic units are used
throughout), yielding the field-free Hamiltonian

Ĥ0 =
2∑

i=1

⎡
⎣ p̂2

i

2
− 2√

z2
i + a2

⎤
⎦ + 1√

(z1 − z2)2 + b2
(1)
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FIG. 1. (Color online) Time-dependent populations of ionic states (channels) for the 3D He (a) initially in the 1s2p 1P state and
(b) the model system initially in the first excited state. The lines are marked with the corresponding channel numbers. Additionally, in
panel (a) the dotted, dashed and dot-dashed lines show the cumulative populations of the ionic states with principal quantum numbers 1, 2, and
3. The populations are shown at times AL(t) = 0. The fine dotted line represents |AL(t)| in arbitary units.

with the screening parameters a = b = 0.8. For the real three-
dimensional (3D) He atom Ĥ0 is standard. We study singlet
configurations, hence the spatial part of the full wave function
is symmetric with respect to the exchange r1 ⇔ r2, z1 ⇔ z2.
This symmetry is preserved during the propagation.

In both 1D and 3D calculations, the radiation field is
polarized linearly along the laboratory z axis and is taken
in the length gauge VL = (z1 + z2)FL(t). The electric field
strength of the laser pulse FL(t) is defined via the field
vector potential FL(t) = −ȦL(t). The laser pulse is AL(t) =
A0 sin2(πt/T ) sin(�t) with a base-to-base pulse duration
T = 2πN/� where N is the number of cycles. We use
N = 2,5,10,20 cycles in our calculations. We show results for
N = 5 cycles, which offer a good balance of time resolution
and pulse bandwidth. The carrier frequency and the peak
intensity are taken � = 2.68 a.u. and 1012 W/cm2 in the
full calculation and � = 2.6 a.u. and 4 × 1015 W/cm2 in
the model. The contributions of multiphoton processes to the
one-electron ionization channel remain negligible even at high
intensities due to high carrier frequency.

For the 1D model, the TDSE is solved on the grid with
spacing �z = 0.2 sufficient for convergence and spanning
from −200 to +200 in each dimension. The propagation uses
the solver based on the multiconfiguration time-dependent
Hartree (see [20] and the references therein) expansion of
the fully symmetrized initial wave function. The implemen-
tation of the method for strong field phenomena has been
described previously [21]. For the 3D calculation, we solve the
two-electron TDSE using the time-dependent close-coupling
method [22–24]. It is important to include a sufficient number
of angular momenta l of each electron since we are interested
in processes induced by the electron-electron correlation. We
have carefully monitored the convergence of the solution with
respect to the maximum value of l and found that lmax = 5 is
sufficient.

The initial conditions are varied in the 1D model: We start
with the first and second excited states of the neutral. For
the full calculation, we use the first excited 1s2p 1P state,
numerically prepared through propagation in imaginary time.

To analyze the physics, we start with the 1D model. Since
we are interested in the one-electron continuum, we have to
project out all bound states of the neutral from the exact two-
electron wave function �(z1,z2,t). Removing the bound states
of the neutral that lie below the first ionization threshold (stable
states) leads to

�I (z1,z2,t) = �(z1,z2,t) −
∑
m

αm(t)ψm(z1,z2) , (2)

with αm(t) = 〈ψm(z1,z2) |�(z1,z2,t)〉, where ψm(z1,z2) are
the field-free bound states of the neutral. The first 20 states
are sufficient to reach convergence. Next, bound states that lie
above the first ionization threshold (autoionizing states) are
removed. The choice of the carrier frequency and pulse dura-
tion ensures negligible population of the autoionizing states, as
confirmed by projecting out all possible Hartree configurations
built from the first 40 ionic (field-free) eigenstates. After the
end of the laser pulse �I (z1,z2,t) represents the “ionized”
wave function with high accuracy.

Once the ionized wave function is extracted, we use it to
build the wave function describing single ionization in the
ionization channel i as

�i(z1,z2,t) = χ
(c)
i (z1,t)ϕi(z2) + ϕi(z1)χ (c)

i (z2,t) , (3)

where χ
(c)
i (z1,t) = 〈ϕi(z2) |�I (z1,z2,t)〉 is the continuum

wave function correlated to the ionic state ϕi (the continuum
wave packet in the ionization channel i). The time-dependent
population of the ionic channel i is given by the norm of �i .

The populations for the lower ionic channels with the
neutral being initially in the first and second excited states,
for the 1D model, are shown correspondingly in Figs. 1(b)
and 2(a). In all cases we observe large populations of excited
ionic states. Due to high photon energy, the inner electron
is ejected first. If the neutral was prepared in the first excited
state [Fig. 1(b)] the instant removal of the inner electron would
lead to the predominant population of the first excited state of
the ion (state i = 2) and the states of the same symmetry
(i = 4,6, etc.). Nevertheless, we observe a large population
created in the ionic state i = 3 (as well as in the states i = 1,5)
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FIG. 2. (Color online) (a) Time-dependent populations of ionic states (channels) for the model system initially in the second excited state.
Populations for (a) ionic channels i = 1–5 and (b) for ionic channels i = 7–10. The lines are marked with the corresponding channel numbers.
The populations are shown at times AL(t) = 0.

that grows during the ionizing pulse [Fig. 1(b)]. The effect is
more pronounced when we prepare the neutral in the second
excited state [Fig. 2(a)]. In this case the shake-up is expected to
populate mostly i = 1,3,5, but we find that the ionic channel
i = 4 is most important. Thus, the shake-up alone does not
describe the system dynamics during the laser pulse. Moreover,
the shake-up and the shake-down processes stop at the end of
the pulse, around ∼12 a.u., while the ionic transitions continue
much longer. The time scale of the postionization interaction
reaches hundreds of attoseconds for our system. We refer to
these delayed excitations as the knock-up process (excitation
via postionization interaction between the continuum and the
ionic electrons). Hence, populations of higher ionic states
result from both the shake-up and knock-up processes during
the laser pulse (t � 12 a.u.), followed by the knock-up process
after the end of the laser pulse.

Similar dynamics is seen for the full-dimensional simula-
tions [Fig. 1(a)]. Ionization of the inner electron in the 1s2p 1P

state leads to the population of the 2p and 3p states of He+
by the shake-up process. The population changes after the
end of the laser pulse correspond mainly to the 2p → 2s and
3p → (3s,3d) transitions, although excitations from 3p state
to the states with higher (� 4) principal quantum numbers are
also present. The ionic channels 2s,3s,3d are populated via
the knock-up (correlation-driven) process. The long life of the
3p → (3s,3d) transitions is caused by the slow component
of the continuum electron wave packet and low transition
energies. For the case of transitions between the states with the
same principal quantum number, the degeneracy of the ionic
states of He+ further enhances the role of electron-electron
correlation compared to other atoms without such degeneracy.
We note, that both for 3D and model 1D systems, the knock-up
excitation may liberate the ionic electron, and thus lead to the
double ionization of the system. This channel is also open
due to high photon energy, but under the conditions studied
here it has a lower probability than single ionization and is not
discussed in this work.

We will now analyze the physics of these delayed transitions
in more detail. The only appreciable mechanism of populating

the states �i after the end of the laser pulse is the interaction
between the continuum and the ionic electron (i.e., coupling
with other �j states). Other mechanisms, such as the decay
of autoionizing states or population via the two-electron
continuum (recapture of one of the electrons into a higher
orbital) are negligible. We extend our analysis to higher ionic
channels, which have a larger orbital radius and display well
pronounced temporal dynamics after the laser pulse. Figure
2(b) shows time-dependent populations of higher ionic states
i = 7–10, again for the neutral prepared in the second excited
state. First, we note that the population changes in Fig. 2(b)
are delayed compared to those between lower excited states
[Figs. 1(b) and 2(a)]. To quantify this picture, we focus on
the state i = 8. Using the wave function decomposed into
different ionization channels in Eq. (3), we compute the
time-dependent transition matrix element between the two
singly ionized states, induced by the electron-electron interac-
tion Tij (t) = 〈�̃i(z1,z2,t) |1/

√
(z1 − z2)2 + b2 |�̃j (z1,z2,t)〉,

where �̃i(z1,z2,t) is the normalized to the unity singly
ionized state �i(z1,z2,t) defined in Eq. (3). This matrix
element can be split into the direct and exchange parts,
and we find that the direct term plays the dominant role,
T

(dir)
ij (t) = 2〈χ̃ (c)

i (z1,t) |Vij (z1) | χ̃ (c)
j (z1,t)〉, where Vij (z1) =

〈ϕi(z2) |1/
√

(z1 − z2)2 + b2 |ϕj (z2)〉 and χ̃
(c)
i (z,t) represents

the normalized to unity wave function χ
(c)
i (z,t). The squared

modulus of the matrix elements is shown in Fig. 3(a). In
agreement with our picture, the dipole-allowed transition 7 ↔
8 has an earlier maximum then the dipole-allowed transition
8 ↔ 9. The progressively increasing delays indeed reflect
the larger radii of the excited states involved. Figure 3(a)
demonstrates the cascade nature of the delayed transitions
(excitation 7 → 8 is followed by the excitation 8 → 9).

Figure 3(b) shows that the time dependence of the matrix
elements does indeed map the structure of the potentials Vij (z),
also explaining the complex temporal profile of the quadrupole
transitions 6 ↔ 8 and 8 ↔ 10 in Fig. 3(a). The time-space
analysis of the correlated continuum wave packets χ

(c)
i (z,t)

shows that the maxima or minima in the transition strengths
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FIG. 3. (Color online) (a) Time-dependent transition strengths |Tij (t)|2 and (b) potentials Vij (z) for i,j = 7,8 (solid line), 8,9 (dotted line),
6,8 (dot-dashed line), and 8,10 (dashed line). Fine dotted line represents |AL(t)| in arbitrary units.

|Tij (t)|2 [Fig. 3(a)] occur at the times when the continuum wave
packets pass through the regions where Vij (z) has extrema.

Thus, we confirm that the motion of the continuum electron
through the electronic cloud of the bound ionic states induces
a transition cascade between progressively higher-lying ionic
states. The time scale of these transitions is determined by
the size of the ionic states and the velocity of the continuum
electron. This simple picture of the relevant time scales is very
much reminiscent of attosecond temporal dynamics during
multiple ionization induced by one-photon absorption, studied
classically in Refs. [25,26].

The temporal picture of the electron-electron interaction
dynamics which we have established suggests a pump-probe
setup for resolving and controlling this two-electron dynamics.
The pump pulse prepares an electronic wave packet in the
superposition of the excited states of the neutral, with a
predominantly one-electron character. The probe pulse, which
follows the pump pulse with a delay, “activates” the inner
electron by quickly promoting it to the continuum, while
the outer electronic wave packet initially acts as a spectator.
The pump-probe delay will control where the activated inner
electron will encounter the “spectator” electron as it moves to
the detector. If the outer electronic wave packet is encountered
close to the core, the correlation-driven excitations will happen
earlier, damping the spectator electron on the lower orbits. If
the activated inner electron meets the outer electronic wave
packet far from the core, the electron-electron interaction will
happen later and should result in a different excitation pattern
left in the ion, predominantly populating higher-lying excited
states. Thus, the outer electron will work like a clock probing
the motion of the second electron, with the delay-dependent
excitation pattern left in the ion encoding the electron-electron
interaction.

To demonstrate this effect, we prepare our model neutral
atom in a superposition of the first and third excited states
(n = 2,4), with equal weights. Both states are dominated by
a single-electron excitation character. Their energy spacing of
0.152 Hartree leads to the “breathing” of the total density with
a period of 41.4 a.u � 1 fsec. This breathing of the excited
electron density is illustrated in Fig. 4(a) by projecting the
total two-electron wave function onto the ionic ground state
ϕ1(x1), which approximates the state of the inner electron.

Once promoted to the continuum, the inner electron will see
the outer electron density, moving through it on the way to the
detector. The characteristic time for the activated continuum
electron to move through the cloud of the spectator electron
is a few atomic units of time, much shorter than the breathing
period of 41.4 a.u.

We now apply an ionizing XUV pulse as a probe and vary
the time delay τ relative to t = 0 at which the initial wave
packet is prepared. The probe carrier frequency is 2.5 a.u.,
the duration is five cycles base-to-base (12.57 a.u.) and the
peak intensity I = 4 × 1015 W/cm2. We vary the delay of the
peak of the probe pulse from 7 to 70 a.u., with an increment of
1 a.u. For each peak position (τ ) we propagate the Schrödinger
equation for a sufficiently long time until the populations
of the ionic states reach their final values. Figures 4(b) and
(c) show the final populations of odd and even ionic channels,
respectively, as a function of the delay τ .

As expected, ionic populations are periodic, with the period
equal to that in Fig. 4(a). However, maxima and minima
in each ionization channel have different amplitudes and,
pertinent to this discussion, correspond to different time delays
τ . To understand the physics revealed by this time delay,
consider first the odd channels shown in Fig. 4(b). Due to
the symmetry of the initial wave packet, only even ionic
channels are populated by the shake-up mechanism [i.e.,
the densities shown in Fig. 4(a) represent a superposition
of even ionic states only]. Odd channels are populated by
the knock-up and knock-down mechanisms. According to
the physical picture described above in the paper, the ionic
channel i is mainly populated when the density of the outer
(spectator) electron overlaps with the spatial region of the
state i [more precisely, with the correlation potentials Vij (x)
corresponding to the particular ionic orbit i]. For the ground
state of the ion i = 1, the maximum overlap is achieved
when the spectator electron is at the inner turning point of
its motion (e.g., at τ = 41.4 a.u.). This is, indeed, the time at
which the knock-down probability to this state is maximized
in Fig. 4(b). The same physical picture explains why the
knock-up probability to the excited state i = 5 is maximized
around τ = 20.7, 62.1 a.u., when the spectator electron is at the
outer turning point and its overlap with the ionic state i = 5 is
maximized.
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FIG. 4. (Color online) (a) Dependence of the outer electron
density on time, for a superposition of the first and third excited
states of the 1D Helium model. (b, c) Population of (b) odd and (c)
even ionic channels as a function of the probe delay τ . Dotted lines
show the maxima positions for the odd channels.

Consider now the state i = 3. The overlap between the
spectator electron and the state i = 3 is maximized twice
during the breathing period, just before and after the turning
point, when the spectator electron is moving either away or
towards the inner turning point. The first time corresponds
to copropagating electrons, the second to counterpropagating.
Maximum population is achieved in the case of copropagating
electrons, having larger interaction time.

Let us now turn to ionic channels with even i. The dynamics
is more complex since these states can be populated via both
the shake-up and the postionization interaction mechanisms,
with different time constants. As a result, the maximum in

the population of the i = 6 channel shows a clear time shift
relative to the i = 5 channel, by about 9 a.u. to earlier times.
A similar shift (about 2 a.u.) is seen between the channels
i = 2 and i = 1. To analyze the physics exhibited by this shift,
we note that the shake-up population of i = 2 and i = 6 is
predominantly created by only one neutral state among the
excited pair of n = 2,4. In the case of the i = 2 state, this
is n = 2. In the case of i = 6, this is n = 4. Thus, if only
shake-up were present in the dynamics, the population of the
i = 2,6 channels would have been almost independent of τ .
The observed dependence on the delay τ in Fig. 4(c) can be
explained by taking into account the postionization knock-up
or knock-down transitions. The shift of the maximum in the
i = 6 channel population towards earlier times is a result of
the loss of the shake-up population via the knock-up or knock-
down transitions to the neighboring states (mainly i = 5,7) in
the vicinity of the outer turning point. The interpretation of the
delay for the ionic channel i = 2 relative to channel i = 1 is
analogous.

Thus, the results in Fig. 4 both support our physical
picture behind the time delays in photoionization, and also
demonstrate the pump-probe scheme for detecting these time
delays between the formation of different ionic states (e.g.,
i = 5 and i = 6 in our example) without relying on the
attosecond streak-camera setup.

A similar setup is possible for the helium atom. A single-
photon (pump) transforms the initial ground state into the
superposition of excited states 1s2p 1P,1s3p 1P,1s4p 1P, . . .

(s → p transition). The ionization of the system by a high-
frequency photon (probe) instantly populates, by shake-up, the
ionic channels 2p,3p,4p, . . ., while the slower knock-up and
knock-down redistribute the population among all, including
the missing, states. The pump-probe dependence of the pop-
ulation of the missing channels 1s,2s,3s,3d,4s,4d,4f, . . . ,

can then be used to resolve the correlation-driven two-
electron dynamics upon the absorption of the probe
photon.

Finally, we note that the postionization effect we have
studied will also be well pronounced in molecules. Our study
on a 1D two-electron diatom, with the internuclear distance
fixed at R = 3.0 a.u., has shown no significant changes
from the atomic case. Generally, knock-up or knock-down
transitions depend on the differences in the ionic bound
energies, meaning that they will be much more pronounced
in large molecular systems.
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