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We investigate the dependence of the intensity of radiation due to high-harmonic
generation (HHG) as a function of the wavelength � of a few-cycle driver field.
Superimposed on a smooth power-law dependence observed previously, strong
and rapid fluctuations on a fine � scale are observed. The origin of these
fluctuations can be identified in terms of quantum path interferences with several
orbits significantly contributing. The dependence on the pulse shape and pulse
length of the driver is analyzed. We discuss the relation to well-known channel
closing effects with emphasis on effects of the ultrashort duration of the pulse.

Keywords: high harmonic generation; driver wavelength; quantum path
interference

1. Introduction

High harmonic generation (HHG) represents a versatile and highly successful avenue
towards an ultrashort coherent light source covering a wavelength range from the vacuum
ultraviolet to the soft X-ray region [1]. This development has led to new research areas,
such as attosecond science [2,3] and nonlinear optics in the XUV region [4,5].
The fundamental wavelength � used in most of existing HHG experiments is in the
near-visible range (�800 nm). The cutoff law for the harmonic spectrum Ec¼ Ipþ 3.17Up

(Ip is the ionization potential of the target atom, Up ¼ F2
0=4!

2 is the ponderomotive
energy, and F0 is laser electric field strength), suggests that a longer fundamental
wavelength would be advantageous to extend the cutoff to higher photon energies, since
Up increases quadratically with �. There is an increasing interest in the development of
high-power mid-infrared (�2 mm) laser systems, e.g. based on optical parametric chirped
pulse amplification. Along those lines the dependence of the HHG yield on � has become
an issue of major interest. Recently, Tate et al. [6] have reported on the dependence of the
harmonic (HHG) yield between 800 nm and 2 mm calculated with the time-dependent
Schrödinger equation (TDSE) for Ar and a strong-field approximation (SFA) for He.
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They found the yield to be described by a power-law /��x with 5&x& 6. More recently,
we have investigated the � dependence on the level of single-atom response for H and Ar
by numerically solving the time-dependent Schrödinger equation [7]. While we could
confirm the overall scaling /��x, the harmonic yield was found not to depend smoothly on
the fundamental wavelength, but to exhibit surprisingly rapid oscillations with a period of
6–20 nm depending on the wavelength region. A semiclassical analysis based on the SFA
has revealed that the rapid oscillations are due to the interference of five to 10 different
rescattering trajectories [7].

Oscillations of the HHG yield have been previously reported in terms of the
dependence on the intensity of the driver I0 / F2

0, both experimentally [8,9] and
theoretically [10,11]. Borca et al. [11] and Milošević and Becker [10] have shown that
HHG is enhanced at channel closings (CC), i.e. if

R ¼
Ip þUp

!
ð1Þ

is an integer. Most of these theoretical studies employed zero-range potentials or the SFA
which both neglect the influence of the long-range potential on the ionized electron.

In the present communication we extend our investigation to the wavelength and
intensity dependence of the HHG yield with the emphasis on the pulse shape and pulse
duration dependence. Even though our primary focus is on ultrashort few-cycle pulses, we
also analyze the relation of the interference oscillations as a function of the wavelength
with those as a function of the intensity. Similarities and differences will be discussed.
Furthermore, we investigate the dependence on the atomic species and on the form of the
atomic potential, reflecting effects of the atomic potential beyond the SFA.

The present paper is organized as follows. Section 2 summarizes the two
complementary integration schemes employed for a full numerical solution of the
TDSE. In Section 3 we discuss the overall wavelength dependence as well as small-scale
variations at a fixed value of fundamental intensity. We analyze the origin of rapid
oscillations of the HHG yield based on the SFA in Section 4. The dependence of the latter
on the pulse shape and on the pulse length is discussed in Section 5. In Section 6 we extend
our discussion to the wavelength and intensity dependence, in particular, as a function of
the parameter R (Equation (1)) which is frequently used to describe channel closings.
Conclusions are given in Section 7. Atomic units are used throughout the paper unless
otherwise stated.

2. Numerical method

We solve the atomic time-dependent Schrödinger equation (TDSE) in the length gauge for
a linearly polarized laser field with central wavelength �c¼ 2�c/!,

i
@

@t
 ðr, tÞ ¼ �

1

2
r2 þ VeffðrÞ þ z FðtÞ

� �
 ðr, tÞ, ð2Þ

where F(t)¼F0f(t)sin(!t) denotes the laser electric field, f(t) is the envelope function
and Veff(r) is the atomic potential. For H, Veff(r) is the bare Coulomb potential
while for Ar we employ a model potential [12] within the single-active electron
approximation which reproduces the binding energy to an accuracy of typically �10�3.
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We employ two complementary methods to solve Equation (2) in order to establish
reliable and consistent results.

In the first method, Equation (2) is numerically integrated using the alternating

direction implicit (Peaceman–Rachford) method [13] with a uniform grid spacing �r of
6.25� 10�2 au. The time step �t is 1/16,000 of an optical cycle for 800 nm wavelength, i.e.
6.9� 10�3 au. This algorithm is accurate to the order of O(�t3). In the second method, the

TDSE is integrated on a finite grid by means of the pseudo-spectral method [14] which is
also accurate to the order of O(�t3). It allows for time-steps of the order of 0.1 atomic
units. The r coordinate is discretized within the interval [0, rmax] with a non-uniform mesh

point distribution. The innermost grid point is typically as small as 2.5� 10�4 au, enabling
an accurate description near the nucleus. A smooth cutoff function is multiplied at each
time-step to avoid spurious reflections at the border rmax, while an analogous cutoff

function prevents reflections at the largest resolved energy Emax. Deeply bound, occupied
states supported by the model potential are dynamically blocked during the time evolution
by assigning a phase corresponding to an unphysically large and positive energy eigenvalue

[15]. We calculate the dipole acceleration €dðtÞ ¼ �@2t hzðtÞi with z¼ r cos�, employing the
Ehrenfest theorem through the relation €dðtÞ ¼ h ðr, tÞ j cos �=r2 � FðtÞ j  ðr, tÞi [14], in
which the second term can be dropped as it does not contribute to the HHG spectrum.

3. Global k dependence

For the analysis of the large-scale � dependence we adopt the laser parameters of [6], with
a fixed peak intensity of 1.6� 1014W cm�2, a variation of � between 800 nm and 2 mm, and
an envelope function f(t) corresponding to an eight-cycle flat-top sine pulse with a half-

cycle turn-on and turn-off. The HHG yield, defined as radiated energy per unit time [7], is
determined by integrating over an energy window �E,

�Y ¼
1

3c3

ð50 eV
20 eV

jað!0Þj2 d!0: ð3Þ

Note that the energy window �E of the output radiation (here 20 to 50 eV) is kept
constant when analyzing �Y as a function of �. Calculated on a coarse mesh in � with
a spacing of 50 nm (Figure 1), �Y falls off with a power law, �Y/ ��x (x� 4.8–5.5) for H

and Ar [7], in qualitative agreement with [6]. The two alternative integration algorithms
employed agree well with each other. Small discrepancies near 2 mm are due to the
difference in grid spacing and can be controlled by changes in the spacing near the origin.

A power law (x� 5) results from the combination of two effects: the spreading of the
returning wavepacket would give x¼ 3 [16] for the overall yield. The spread of the HHG
yield over a wider spectral range with an upper cutoff growing as Ec/ �

2 leads to an

additional decrease of yield /��2 within the fixed window �E (see Equation (3)). In fact,
when increasing the upper integration limit in Equation (3) to the cutoff energy Ec, the
exponent of the power law diminishes and reaches x� 3.5 to 3.6 for Ar and H, in closer

agreement with [16].
A more detailed look at Figure 1 reveals the remarkable feature that the harmonic yield

does not vary smoothly with � as may have been anticipated in previous work [6], but
strongly fluctuates. Slight change in fundamental wavelength may lead to variations of the
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yield by a factor of 2 to 6. Such rapid fluctuations imply that a reliable � dependence can

only be established by employing a much finer resolution. The fluctuations are not specific

to hydrogen but appear for argon as well [7].

4. Small-scale variations and path interference

Many features of HHG can be intuitively and even quantitatively explained in terms of

returning classical (or quantum) trajectories [16,17] underlying the semiclassical three step

model [18]. The main contribution to the HHG spectrum comes from those electronic

paths that correspond to returning trajectories ionized at a certain time ti and recombining

with the parent ion at a later time tf. Interference oscillations are controlled by the

evolution phase, the semiclassical action of the path P, reading

SPðti, tfÞ ¼

ðtf
ti

ð pþ Aðt0ÞÞ2

2
dt0 þ g � Ipðtf � tiÞ: ð4Þ

Ip is the ionization potential (binding energy) of the atom and A(t) the laser vector

potential defined by AðtÞ ¼ �
Ð1
t Fðt0Þ dt0. p is the canonical momentum of the returning

trajectory. The empirical correction factor g (here g¼ 1.3) has been frequently introduced

to account for effects of an ‘effective’ threshold or binding energy when comparing with

full TDSE solutions in the case of quantum path interference [19,20].
The time-dependent dipole moment d(t) is expressed as [21]

dðtfÞ ¼
X
PðtiÞ

bionðtiÞ exp½�iSPðti, tfÞ�crecðtfÞ þ c:c:,
ð5Þ

i.e. a sum over classical paths P that start at the moment of tunnel ionization ti with

amplitude bion(ti), evolve in the laser field – exp[�iSP(ti, tf)] – and recombine upon
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Figure 1. Integrated harmonic yield �Y for hydrogen between 20 and 50 eV as a function of �
calculated on a coarse mesh with ��¼ 50 nm. �, Peaceman-Rachford method; œ, pseudo-spectral
method. Solid line: fit �Y/ ��x. The inset provides a zoom near 1 mm. (The color version of this
figure is included in the online version of the journal.)

2620 K. Schiessl et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
i
k
a
g
a
k
u
 
K
e
n
k
y
u
s
h
o
 
M
Z
]
 
A
t
:
 
0
7
:
5
8
 
1
8
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



rescattering at the core at time tf with the amplitude crec(tf). Within this model, the

dependence on the envelope function f(t) is explicitly included through the number and

relative weight of returning trajectories contributing to the harmonic emission at a given

frequency. For ultrashort few-cycle pulses this number is limited.
When including between five and 10 returning paths, the semiclassical calculation can

reproduce the modulation depth, modulation frequency, and the approximate phase of the

� oscillations reasonably well, thus unambiguously establishing the quantum path

interference as the origin of the fluctuations (see Figure 2(b)). Full convergence is only

reached when up to ten trajectories are included. Setting g¼ 1.0 the standard SFA result of

predicting enhancements near channel closing is recovered, but at the price of an unwanted

shift of the oscillations compared to the TDSE data.
In the case of Ar (Figure 2(c)), convergence also for small sub-peaks (e.g. at 1934, 1941,

and 1947 nm) is reached after 10–12 trajectories. The visibility of contributions of multiple-

returning trajectories with excursion times in the order of six half-cycles highlights the

importance of such trajectories even in few-cycle pulses. Clear indications of the

significance of such trajectories has recently also been found by Tate et al. in their analysis

of the wavelength dependence of the HHG yield on a large � scale [6].
We emphasize the remarkable variation on a fine � scale for an ultrashort pulse.

An ultrashort few-cycle pulse is characterized by a central wavelength �c and a Fourier

broadening ��. In the present case, ��/�c is of the order of 20%. The rapid variations of

the harmonic yield occur on a scale �� much smaller than the Fourier width of the pulse.

This finding, at a first glance surprising, is a direct consequence of the quantum path

interference. It follows from the existence and the fixed spacing in between discrete points

in time – controlled by �c – at which electronic trajectories are launched. As long as

the few-cycle pulse permits the generation of a set of a few quantum paths in subsequent

half-cycles, the overall temporal characteristics of the driver pulse is of minor importance,

though the latter will influence the detailed shape of the interference pattern. A more

detailed discussion of the dependence on the particular choice of the envelope function f(t)

will be given in Section 5.

3x10−6

2x10−6

1x10−6

 1000  1020  1040  1060  1080  1100

Y
ie

ld
 (

ar
b.

un
its

)

1 path 2 paths

5 paths
10 paths

(b) H

3x10−6

2x10−6

1x10−6

Y
ie

ld
 (

ar
b.

un
its

) (a) H SFA

TDSE

2.5x10−7

2.0x10−7

1.5x10−7

1.0x10−7

5.0x10−8

 1930  1935  1940  1945  1950  1955

Y
ie

ld
 [a

rb
.u

ni
ts

]

λ  (nm)
λ  (nm)

0

(c)Ar SFA, 5 paths

SFA, 12 paths

TDSE

Figure 2. Variation of the integrated harmonic yield �Y in a narrow range of �, comparison of the
SFA with results from the TDSE: (a) and (b) hydrogen near 1mm; (c) argon near 2 mm. (The color
version of this figure is included in the online version of the journal.)
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Expressed in terms of �, the modulation period of the harmonic yield �� is a function

of the central wavelength �c itself. It is about 20 nm near 1 mm wavelength and

approaches� 6 nm near a wavelength of 2 mm (Figure 3). The scaling of �� with � can be

estimated by a variation of semiclassical action in Equation (4) with �� to be /��2 [7],

which predicts the modulation length remarkably well (see Figure 3). The ��2 dependence

can, equivalently, also be deduced from the ‘channel closing’ picture discussed below in

more detail (see Section 6).

5. Pulse length and pulse shape dependence

5.1. Pulse length dependence

The influence of the pulse length on the � dependence of the harmonic yield can be

observed in Figure 4. As might have been expected, the amplitude of the oscillations

decreases with decreasing pulse length when long, multiple-returning electron trajectories

are suppressed. On the other hand, for longer pulses the amplitude increases but evolves

locally non-monotonically. For example, in the double peak structure visible in the yield

oscillation of the eight cycles flat-top pulse (near 1030, 1050, and 1070 nm), the left

subpeak grows and forms a sharp spike, while other subpeaks might even decrease. One

can consider the results for a 16-cycle, flat-top pulse to be approximately ‘converged’ with

respect to the pulse length. At the intensity considered, the ionization yield reaches already

about 63%. Therefore, contributions of further cycles (in a longer pulse) are expected to be

negligible because of ground-state depletion. SFA calculations incorporating ground-state

depletion (i.e. the model described in Equation (5) and [21]) show a very similar behavior,

confirming the appearance of a maximum number of quantum paths contributing due to

ionization.
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Figure 3. Variation of the modulation period �� with the driver’s central wavelength �c for
hydrogen. g, TDSE; m, SFA. Solid line: ��2 scaling, dashed: channel closing condition (Equation
(7)). (The color version of this figure is included in the online version of the journal.)
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5.2. Pulse shape dependence

The full solution of the TDSE allows one to explore in detail the dependence of the

harmonic yield on the shape of the envelope function f(t), keeping in the following the

effective duration of the pulse approximately constant. In Figure 5, oscillations originating

from driving pulses with a ‘smooth’ envelope such as a sin2-pulse ( f(t)¼ sin2(t�/�tot) with
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Figure 4. Fluctuations of the harmonic yield �Y for hydrogen and different pulse durations as
a function of �. Solid, dashed, and dotted curves correspond to a total duration of 8, 16, and 4 cycles,
respectively. Other pulse parameters are the same as in Figure 1. (The color version of this figure is
included in the online version of the journal.)
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Figure 5. Fluctuations of the harmonic yield �Y as a function of the fundamental wavelength � for
hydrogen. Solid: 8 cycles flat-top with a 1/2 (1/2) cycle ramp on (off), dotted: 14 cycles sin2 pulse with
effectively �p¼ 7 cycles (FWHM) contributing, dash-dotted: 16 cycles Gaussian with a FWHM of
�p¼ 7 cycles. Other pulse parameters are the same as in Figure 1. (The color version of this figure is
included in the online version of the journal.)
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t2 [0, �tot]) or a Gaussian pulse (f ðtÞ ¼ expð�t24 ln 2=�2pÞ with t2 [��tot/2, �tot/2]) are
depicted along with the flat-top pulse. Qualitatively, the results for the flat-top pulse are
recovered: the oscillations feature roughly the same modulation period with maxima near
the same central wavelength. Remarkably, even the ratio of a maximum to a neighboring
minimum remains in the same order of magnitude, namely about 2, although the absolute
yield is somewhat lower. It should be noted that all pulses in Figure 5 have the same
effective pulse length given by the full width at half maximum (FWHM), to which the
harmonic yield (that is proportional to the radiated energy per time) is normalized here.
For a sin2-pulse �p¼ �tot/2. For a Gaussian pulse, �p is the FWHM of the Gaussian f(t),
while for the flat-top it is the full duration disregarding the ramp on (off). Overall, the
influence of pulse shape is observed to be moderate, as long as the effective pulse length
that determines the maximal number of contributing trajectories is kept fixed.

However, changing the number of contributing trajectories can lead to distinct changes
even when just one additional cycle is added. This is illustrated in Figure 6 where
a qualitative change of the interference pattern is observed by going from a sin2-pulse with
�p¼ 7 to one with �p¼ 8 cycles. Remarkably, such qualitative changes do not appear for
a flat-top pulse (see discussion in Section 5.1). The SFA model accounting for the
interference of trajectories supported by the given pulse envelope (Equation (5)) is able to
correctly reproduce this behavior.

6. Relation to channel closing interferences

6.1. Wavelength and intensity dependence

Interference of multiple quantum paths has previously been studied in the context of
the intensity dependence of the harmonic yield [10,11]. Using a Floquet theory for
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Figure 6. Fluctuations of the harmonic yield �Y as a function of the fundamental wavelength � for
hydrogen. Dashed: 16 cycles sin2 with a FWHM of �p¼ 8 cycles, dotted: 14 cycles sin2, �p¼ 7 cycles,
solid: SFA based on classical trajectories with up to 20 paths, �p¼ 7 cycles, dash-dotted: same as the
latter, but �p¼ 8 cycles. Other pulse parameters are the same as in Figure 1. (The color version of this
figure is included in the online version of the journal.)
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a zero-range potential and the strong-field approximation, Borca et al. [11], and Milošević

and Becker [10] have shown that the HHG yield exhibits resonance-like enhancements

when the n-photon ionization channel is closed with increasing intensity. Very recently,

first experimental evidence for the interference between the short and long paths was

presented [8] in the intensity dependence of the HHG yield. Expressed in terms of the

parameter R (Equation (1)), resonance peaks are expected at integer values of R [10,11].

Since the pulse has been assumed to have constant field strength and to be monochromatic

( f(t)¼ 1) in these studies, it may contain a very large (in fact, up to an infinite) number of

trajectories giving rise to sharp structures near the channel closing resonance. This is

obviously qualitatively different from the present case of few-cycle pulses, where the

number of trajectories is strictly limited by the pulse shape and thus by the Fourier

broadening. Nevertheless, the appearance of a large number of interfering trajectories

suggests an interrelation to the case of rapid oscillations in the wavelength dependence. To

clarify this relation we analyze the HHG yield as a function of R which, in turn, is also

a function of �, namely

Rð�Þ ¼
Ip þUpð�Þ

!
¼

Ip þ �
2I=16p2c2

� �
�

2pc
: ð6Þ

Note, however, the intensity and hence the ponderomotive energy is strongly time

dependent for a few-cycle pulse. For the following discussion of the HHG yield as

a function of R (Equation (6)) we employ the maximum intensity I0 at the temporal peak

of the envelope function, although temporal intensity averaging is, from the start, included

in the HHG spectrum for an ultrashort driving pulse.
Figure 7 displays dependence on the central wavelength for hydrogen around �¼ 1 mm

expressed by � for different values of peak intensity I0. The yield exhibits rapid

fluctuations both when the wavelength is varied at a fixed value of I0, as well as a function

of I0 when �c is kept constant. Expressed in terms R (Figure 8(a)) the maxima in the yield

at each individual value of I0 overlap, showing a common functional dependence. This

observation suggests that the wavelength and intensity dependence of the HHG yield can

be discussed as a function of R instead of �c. Not only the peak positions but also detailed

structures of the dependence on �c are quite robust against the variation of I0, when

expressed in terms of R.
Results for argon (Figure 8(b)) show a similar behavior, indicating the applicability of

the parameter R independent of the atomic species. Interference peaks appear with

spacings given by �R¼ 1. However, the peaks do not appear at integer values of R.

For monochromatic (long) pulses with constant intensity such shifts have been attributed

to the appearance of effective thresholds [19,20,22]. Corrections to the CC condition

(Equation (1)) have been proposed to account for excited states that are missing in SFA

models [19,20,22]. Qualitatively, such corrections have the same effect as the parameter g

introduced in Equation (4). The spacing �R is closely related to the spacing �� in the

wavelength dependence of the peak positions. This relation can be made explicit with the

help of the following consideration. We first note that the semiclassical action SP in

Equation (4) has its largest contribution from the A(t)2 term in the strong field case and

can be approximated by SP� (Upþ Ip)�f¼R!�f where �f¼ tf� ti is the flight time of the

electron trajectory [17], which is approximately a multiple of the half laser cycle �/!.
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Figure 7. TDSE-calculated integrated harmonic yield �Y between 20 and 50 eV as a function
of the central wavelength �c and for different values of peak intensity I0 indicated in the figure.
Dotted lines roughly connect maxima for different values of intensity, following lines of
constant values of R. (The color version of this figure is included in the online version of
the journal.)
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Figure 8. Fluctuations of the harmonic yield �Y as a function of the parameter R at various
driver intensities: (a) hydrogen, (b) argon. Other pulse parameters are the same as in
Figure 1. (The color version of this figure is included in the online version of the journal.)
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The period of the modulation corresponds to a phase change of SP by �. Accordingly,

�SP���R¼�, i.e. �R¼ 1. Hence, we find for the scaling of �� with �

�� �
2pc

Ip þ 3Up
: ð7Þ

Equation (7) reproduces the � dependence of �� quite well (Figure 3).

6.2. Comparison between intensity and wavelength variation for short pulses

The parameter R is a function of both the peak intensity I0 and the central wavelength �c
of the driver. An ideal (infinitely) long laser pulse with a flat intensity distribution is

characterized by the peak intensity and the (central) wavelength only. However, for short,

few-cycle laser pulses which are used in contemporary HHG experiments the situation is

different. The spectral width �! of the pulse can be large. In the case of the sin2-pulse with

a FWHM spread of �p¼ 4 optical cycles, it is of the order of ��/�c¼�!/!� 0.25 near

a central wavelength of 1 mm. At the same time, also an implicit variation of intensity �I/I0
is present due to the envelope function f(t). �I can be regarded as the temporal intensity

sweep, �I� 0.5I0. A direct comparison in terms of R of oscillations induced by

the function R(I0) (via Up(I0)) and R(�c) (via Up(�c)) is given in Figure 9 for the case of

a few-cycle sin2 pulse.
In a simple picture one could expect that oscillations in the R(�c) curve would be

averaged out due to the finite �� or �I, similar to channel closing peaks when averaging

over the peak intensity I0 of a monochromatic pulse. That this is not the case follows from

the fact that the time structure of the electric field is still given by the central wavelength �c
for the entire pulse. Although the amplitude changes with the pulse envelope on a scale of
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Figure 9. Fluctuations of the harmonic yield �Y as a function of the parameter R for hydrogen,
comparison of the difference between varying the peak intensity I0 (Up(I0) and �c¼ const.) and the
wavelength �c (Up(�c) and I0¼ const.). Data for a sin2 pulse with a total length of eight cycles is
shown. Note, however, �p¼ 4 cycles in the case of the sin2 pulse. Near R¼ 23.1, the curves intersect
due to identical pulse parameters. (The color version of this figure is included in the online version of
the journal.)
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a few optical cycles, this ‘implicit’ averaging over �I does not destroy the oscillations since
it is a coherent process, i.e. that phase information is kept. Accordingly, path interference
structures are still visible. Remarkably, such structures can be observed even on
a wavelength scale ��5��.

Along those lines, it is interesting to compare the oscillations induced by the �
dependence of Up(�c) with those by the intensity dependence Up(I0) under the assumption
of an equal amount of averaging �I0/I0¼��/�c. Such an ‘explicit’ average over the peak
intensity I0 is an incoherent process different from the ‘implicit’ average due to the finite
��. When employing an intensity averaging with a Gaussian with a FWHM of �I0¼
(��/�c)I0, oscillations disappear almost completely (Figure 10). By contrast, for a short
pulse with ��/�c¼ 0.25, the oscillations are pronounced even though a temporal intensity
average (via the envelope) is already included. Therefore oscillations as a function of �c
are, to some extent, more robust than those as a function of I0. Nevertheless, an
experimental observation may, inevitably, also contain an average over I0 due to the
spatial intensity distribution in a laser focus. This will have the tendency to smooth out the
oscillatory structure. A non-generic spatially flat intensity distribution may serve as
a remedy for this problem [9].

7. Summary

In conclusion, we have found that the fundamental wavelength dependence of HHG with
few-cycle pulses in the single-atom response features surprisingly strong oscillations on
fine wavelength scales with modulation periods as small as 6 nm in the mid-infrared regime
near �¼ 2 mm. Thus, even a slight change in fundamental wavelength leads to strong
variations in the HHG yield. According to a semiclassical analysis based on the SFA,
this rapid variation on a fine scale is the consequence of the interference of several
rescattering trajectories with long excursion times, confirming the significance of multiple
returns of the electron wavepacket [6]. On a large � scale, apart from the rapid oscillation,
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Figure 10. Same as Figure 9, but after intensity averaging over a relative width �I0/I0 for the curve
Up(I0) comparable to the relative Fourier broadening ��/�c of the few-cycle pulse used.

2628 K. Schiessl et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
i
k
a
g
a
k
u
 
K
e
n
k
y
u
s
h
o
 
M
Z
]
 
A
t
:
 
0
7
:
5
8
 
1
8
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



our TDSE results show that the HHG yield at constant intensity decreases as ��x with

x� 4.8–5.5 for H and Ar, which is close to the scaling reported in [6]. The oscillations have

been found to be stable with respect to variations of the pulse envelope as long as the

effective pulse length and thus the number of relevant trajectories remains equal.

The present oscillations are related to similar regular enhancements of harmonic yield as

a function of the intensity found near channel closings in experiments [9]. The latter have

been discussed in the framework of the SFA by employing (infinitely) long, monochro-

matic driving fields [10]. The detailed structure of the oscillations, however, depends on the

given shape of the few-cycle pulse employed, and on the specific atomic potential, which

can be accounted for only by a full numerical solution of the TDSE. Furthermore, for

short pulses, oscillations of the harmonic yield induced by a variation of � can be

distinguished from those related to a variation of intensity. Although the experimental

observability of oscillations in the � dependence of the yield remains to be analyzed in

more detail, preliminary calculations for pulse propagation in one dimension, but

accounting for the geometric Guoy phase, show that interference oscillations can persist in

loose focus geometry. A spatially flat intensity distribution over the extension of the gas

target will be of high importance in order to suppress unwanted averaging effects.
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