
J. Plasma Physics (1998), vol. 60, part 4, pp. 787–810. Printed in the United Kingdom

� 1998 Cambridge University Press

787

Photoabsorption by an ion immersed in a
plasma at any temperature

K. I S H I K A W A,1 B. U. F E L D E R H O F,1 T. B L E N S K I2

and B. C I C H O C K I3

1Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany

2DSM/DRECAM/SPAM, CEA Saclay, F 91191 Gif-sur-Yvette Cedex, France
3Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-618 Warsaw, Poland

(Received 2 February 1998 and in revised form 23 June 1998)

The photoabsorption cross-section of an ion immersed in a plasma is studied on
the basis of the Thomas–Fermi approximation for the equilibrium electron dis-
tribution and Bloch’s classical hydrodynamic model for collective motion of the
electrons. The frequency-dependent cross-section scales with the nuclear charge,
and depends strongly on the plasma density and temperature. An approximation
of the frequency dependence is constructed with the aid of sum rules and Padé
approximants.

1. Introduction
The theory of photoabsorption by ions in a plasma is relevant for the calculation
of plasma opacity – a crucial concept in inertial confinement fusion and stellar
structure. The early history of opacity calculations is reviewed in the monograph
by Armstrong and Nicholls (1972). Existing opacity codes (Goldberg et al. 1986;
Bar-Shalom et al. 1989; Abdallah and Clark 1991; Rogers and Iglesias 1992; Keady
et al. 1993; Blenski et al. 1997) use the main features of the model proposed by Mayer
(1949). In this model the electrons are divided into two categories: atomically bound
and free electrons. All intermediate bound states, for example quasimolecular states,
are neglected, on the basis of their small statistical weight. In Mayer’s model, and
subsequently probably in all existing opacity codes, the photoabsorption cross-
section is divided into bound–bound (b–b), bound-free (b–f ) and free-free (f–f )
contributions. In the model the interaction between bound and free electrons is
neglected, but in existing opacity codes part of the dynamic correlation between
bound and free electrons is accounted for as line broadening. The modern opacity
codes have reached a high level of sophistication in the treatment of bound–bound
transitions. Term structure is taken into account either by statistical methods (Bar-
Shalom et al. 1989; Blenski et al. 1997) or by detailed term accounting (Goldberg
et al. 1986; Abdallah & Clark 1991; Rogers & Iglesias 1992; Keady et al. 1993).
However, the division into b–b, b–f and f–f transitions is still used in the codes.

Probably one of the reasons that present-day opacity codes focus their attention
on the b–b and b–f transitions is the fact that up to now all direct opacity mea-
surements (Davidson et al. 1988; Foster et al. 1991; Perry et al. 1991; Da Silva et al.
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1992), have been performed in plasmas of relatively low density (0.05 g cm−3 at
most). This is because of the hydrodynamic expansion scenario of the sandwich-
type targets in present-day laser–plasma experiments. The neglect of correlation
between bound and free electrons seems to be justified when the plasma density
is small compared with solid density, and when one is interested in photoabsorp-
tion at relatively high frequencies. There are two reasons for this. First, for small
plasma density, of the order of one percent of solid density, the plasma frequency
is small (less than 1 eV). Secondly, the total charge of the free electrons contained
in the ionic core, where the bound electrons are localized, is negligible. Thus a pure
atomic physics approach dealing with free ions, supplemented by thermal statis-
tics for all species as given for example by Saha equilibrium theory, seems to be
sufficient to interpret the spectral data from present-day opacity measurements,
similar to those presented in Davidson et al. (1988), Foster et al. (1991), Perry et al.
(1991) and Da Silva et al. (1992).

It was shown by Zangwill and Soven (1980) and Zangwill and Liberman (1984),
in a calculation of the photoabsorption of rare-gas atoms based on the local density
functional method, that channel mixing between the b–b and b–f transitions is very
important (Mahan and Subbaswamy 1990). There have been attempts to apply the
method of Zangwill and Soven (1980) to ions in a plasma (Grimaldi et al. 1985;
Perrot and Dharma-wardana 1993). However, in this work the interaction with
free–free transitions was neglected without justification, even though bound and
free electrons should be treated on equal footing.

In fusion experiments with high-energy lasers of the next generation, it will be
possible to achieve one-tenth of solid density at temperatures of a few tens of eV for
an aluminum sandwich target (Lee et al. 1995). A complete treatment of photoab-
sorption in dense plasmas under such conditions is difficult. Besides the free–free
transitions due to collisions with atomic centers, collective phenomena also become
important (Blenski and Cichocki 1992, 1994). Channel mixing between b–b, b–f and
f–f transitions is known to be quite important in metals (Zaremba and Sturm 1991;
Sturm et al. 1990). Mayer’s (1949) model is probably not a good starting point for
the calculation of photoabsorption in dense plasmas. In previous work (Blenski and
Cichocki 1992, 1994; Felderhof et al. 1995a, b, c) we have proposed that a cluster ex-
pansion, allowing a decomposition of the many-ion problem into a superposition of
few-ion problems, provides the correct theoretical approach. However, a full quan-
tum mechanical treatment of photoabsorption, even for a single ion immersed in a
plasma, is a very demanding task. Therefore in the present study we use a simple
semiclassical approach in order to get qualitative insight. The calculation is based
on the Thomas–Fermi model combined with classical hydrodynamics, as used by
Bloch (1933) in a calculation of the stopping power of atoms. The same model
was used by Ball et al. (1973) for the calculation of photoabsorption by an atom.
The model takes account of collective motion, but single electron processes are not
included. Thus we cannot expect detailed agreement with opacity measurements.
Nonetheless, we believe that the calculation reveals important qualitative features.

In the following we extend the work of Ball et al. (1973) to an ion immersed in a
plasma at any temperature. We use an ion correlation model in which the other ions
in the plasma appear only in their average effect on the equilibrium distribution
of electrons (Perrot 1982; Cauble et al. 1984; Crowley 1990). Rather than calculate
the ion correlation function, we assume it to be known. Specifically, we assume that
the equilibrium distribution of electrons can be calculated in the Thomas–Fermi
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approximation, with the nuclear point charge of the selected ion at fixed position
and the remaining ions smeared out into a uniform neutralizing background. The
calculation can be modified without difficulty to a different ion correlation function
and corresponding radial electron density profile.

Within the framework of Bloch’s hydrodynamic model, the dielectric linear re-
sponse of the entire plasma can be analysed by the method of cluster expansion
(Felderhof et al. 1995a; Ishikawa and Felderhof 1998). The analysis shows how to
incorporate the response calculated for the ion correlation model into the dielectric
function of the plasma. In the ion correlation model the plasma is uniform at large
distances from the central ion. In an incident oscillating electric field the charge
distribution of the ion vibrates and generates outgoing plasma waves. We use an
electrostatic dipole approximation. Photoabsorption occurs because incident wave
energy is converted into the energy of longitudinal plasma waves. We find for our
model that the frequency-dependent photoabsorption cross-section scales with the
nuclear charge and depends strongly on plasma density and temperature.

Our method of calculation of the frequency-dependent photoabsorption cross-
section differs from that of Ball et al. (1973). It was developed for a general radial
electron density profile (Felderhof et al. 1995b), and applied to the explicit calcula-
tion of photoabsorption for a model ion with a square-well profile (Felderhof et al.
1995c). The method is rather more straightforward than that of Ball et al. (1973).

The equilibrium electron density profile can be decomposed into contributions
from bound and free electrons. We determine the degree of ionization as a function
of plasma density and temperature. In the calculation of the photoabsorption cross-
section we make no attempt to separate into contributions from bound and free
electrons. Since only the total cross-section counts, not much would be gained from
such a decomposition. It would be of interest to adorn the model with an ion
core polarizability with discrete resonances, in the manner proposed by Sturm and
Zaremba (1991) and Sturm et al. (1990) for metals. This would provide a qualitative
description of the mixing of single-particle and collective effects.

2. Thomas–Fermi model for an ion in a plasma

We consider an electron–ion plasma in a volume V with the ions treated as point
charges Ze located at R1, . . . ,RN and with electrons described collectively as a
fluid with local density n(r, t) and flow velocity v(r, t) . The electron density and
flow velocity are assumed to satisfy the hydrodynamic equations (Bloch 1933)

∂n

∂t
+∇ · (nv) = 0, (2.1a)

nm
dv

dt
= −∇ p + ne∇φ, (2.1b)

where m is the electron mass, −e is the electron charge and d/dt = ∂/∂t + v ·∇ is
the substantial derivative. The pressure p is assumed to be related to local number
density n by the equation of state p = p(n, T ) for an ideal Fermi gas at temperature
T . The electrostatic potential φ(r, t) is governed by Poisson’s equation

∇2φ = 4πne− 4πρf − 4πρex, (2.2)
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where

ρf (r) = Ze
N∑
j=1

δ(r− Rj) (2.3)

is the charge density of the fixed ions and ρex(r, t) is the external charge density. For
ρex = 0, the equations are satisfied by equilibrium density n0(r; R1, . . . ,RN ) and flow
velocity v0 = 0. For the equation of state of an ideal Fermi gas, the equilibrium
density n0(r; X) is the Thomas–Fermi solution for the given configuration X =
(R1, . . . ,RN ) of ion centres (Landau and Lifshitz 1965; Englert 1988). The local
chemical potential µ0 and the electrostatic potential φ0 combine as

µ0(r; X)− eφ0(r; X) = const, (2.4)

with the constant value of the electrochemical potential chosen in such a way that
the whole system is neutral.

The linear response of the system to an external charge density ρex(r, t) with cor-
responding potential φex(r, t) can be handled by the methods of multiple scatter-
ing and cluster expansion (Felderhof et al. 1995a; Ishikawa and Felderhof 1998a).
To lowest order in the cluster expansion, the system is approximated as a one-
component plasma. In equilibrium, this has uniform electron density n

(0)
0 = Z0 ni

and a fixed uniform background of charge density Z0 nie. Later we shall deter-
mine the effective charge number Z0 self-consistently by identifying n(0)

0 with the
number density of free electrons. Some of the electrons are bound to the nuclei and
do not contribute to the response of the one-component plasma. The equilibrium
electrostatic potential φ0 of the one-component plasma vanishes, and the chemi-
cal potential µ(0)

0 of the free electrons is related to n
(0)
0 by the equation of state

for an ideal Fermi gas. In the thermodynamic limit N → ∞, V → ∞ at constant
ni = N/V the dielectric response functions of this electron−0−ion system are easily
calculated from the linearized hydrodynamic equations.

To first order in the cluster expansion, one considers an electron–1-ion system
characterized by an equilibrium density profile n̄0(r; R1) corresponding to a mean
density of electrons with a single nucleus of charge Ze centred at R1. In addition,
one needs the profile ϑ̄0(r; R1) corresponding to a mean local derivative (∂µ/∂n)n0 of
the chemical potential with respect to density. At large distances from R1 the den-
sity n̄0(r; R1) tends to the uniform free-electron value n(0)

0 , and the profile ϑ̄0(r; R1)
tends to the corresponding value ϑ(0)

0 . The cluster expansion shows how to incorpo-
rate the response of the electron–1-ion system to an applied field into an approxi-
mation to the response of the plasma with N ions.

The calculation of the profiles n̄0(r; R1) and ϑ̄0(r; R1) from the microscopic equi-
librium functions n0(r; X) and ϑ0(r; X) is in itself a non-trivial problem. In the fol-
lowing we circumvent this problem and simply postulate a prescription for finding
approximate profiles from Thomas–Fermi theory. We describe the prescription sep-
arately for zero temperature and for temperature T > 0. At zero temperature, the
Fermi–Dirac theory of the ideal gas shows that density n̄0 and chemical potential
µ̄0 are related by

µ̄0 =
h2

2m

(
3n̄0

8π

)2/3

, (2.5)

where h is Planck’s constant. Without loss of generality, we place the centre R1
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at the origin. In Thomas–Fermi theory (Landau and Lifshitz 1965; Englert 1988),
(2.5) is taken to be valid locally in the form

µ̄0(r) = µ
(0)
0 + eφ0(r) =

h2

2m

(
3

8π
n̄0(r)

)2/3

(2.6)

with the potential φ0 determined from Poisson’s equation

∇2φ0 = 4πe[n̄0(r)− n(0)
0 ]− 4πZeδ(r). (2.7)

The last two equations must be solved self-consistently, with the condition that
φ0(r) tends to zero at infinity. The derivative ϑ0 = (∂µ/∂n)n0 leads to the corre-
sponding profile

ϑ̄0(r) =
2
3
µ̄0(r)
n̄0(r)

. (2.8)

Introducing the dimensionless distance x by

r = Z−1/3 ba0x, b = 1
2

(
3π
4

)2/3
, (2.9)

where a0 = ~2/me2 is the Bohr radius, and the function χ(x) by

φ0(r) =
Ze

r
χ(x), (2.10)

we find for χ(x) the radial equation

d2χ

dx2 =
1
x1/2

{[χ(x) + C x]3/2 − C3/2 x3/2}, (2.11)

with the constant

C = Z−4/3(4πb3 n
(0)
0 a3

0)2/3. (2.12)

The boundary conditions are

χ(0) = 1, lim
x→∞ χ(x) = 0. (2.13)

The radial equation (2.11) generalizes the corresponding equation for an atom in
vacuum (Landau and Lifshitz 1965), for which C = 0, to the case of an ion in a
plasma. The density profile n̄0(r) in (2.6) can be expressed as

n̄0(r) =
Z2

b3a3
0
n̂0(x), (2.14)

with the dimensionless profile

n̂0(x) =
1

4π

[
χ(x)
x

+ C

]3/2

. (2.15)

The profile n̂0(x) depends on Z only via the parameter C.
For temperature T > 0, the electron equilibrium distribution in (r, p) space is

f (r, p) =
2
h3

{
exp
[
β

(
p2

2m
− eφ0(r)− µ(0)

0

)]
+ 1
}−1

, (2.16)

where β = 1/kBT . By integration over momentum p, one finds for the local electron
density

n0(r) =
∫

f (r, p) dp =
4
π1/2

λ−3
dB F1/2

(
µ

(0)
0 + eφ0(r)
kBT

)
(2.17)
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with de Broglie wavelength λdB = h(2πmkBT )−1/2 and Fermi–Dirac integral (Cody
and Thacher 1967; Antia 1993)

F1/2(z) =
∫ ∞

0

y1/2

exp(y − z) + 1
dy. (2.18)

The constant µ(0)
0 is related to the asymptotic density n(0)

0 by

n
(0)
0 =

4
π1/2

λ−3
dB F1/2

(
µ

(0)
0

kBT

)
. (2.19)

The electrostatic potential φ0(r) is given by Poisson’s equation (2.7). The dimen-
sionless function χ(x), defined by (2.10), satisfies the radial equation

d2χ

dx2 = 3
2γ
−3/2 x[F1/2(α0(x))− F1/2(α(0)

0 )], (2.20)

with coefficient

γ = Z4/3 e2

kBTba0
, (2.21)

and with the local reduced chemical potential

α0(x) = α
(0)
0 + γ

χ(x)
x

, (2.22)

which takes the value

α
(0)
0 =

µ
(0)
0

kBT
(2.23)

at infinity. The boundary conditions on χ(x) are the same as in (2.13). It is easily
shown that the solution of (2.20) tends to the solution of (2.11) in the limit of
zero temperature. It follows from (2.19) that the reduced chemical potential α(0)

0 is
determined by the product n(0)

0 λ3
dB.

The profile n̄0(r) follows from the solution of (2.20) via (2.10) and (2.17). From
(2.17), one finds for the profile ϑ̄0(r)

ϑ̄0(r) =
π1/2

4
λ3
dB kBT

F ′1/2(α0(x))
. (2.24)

It is convenient to scale temperature and chemical potential as

kBT =
Z4/3e2

ba0
T̂ , (2.25a)

µ
(0)
0 =

Z4/3e2

ba0
µ̂

(0)
0 . (2.25b)

Then the profile ϑ̄0(r) scales as

ϑ̄0(r) = Z−2/3 e2 b2 a2
0 ϑ̂0(x), (2.26)

with

ϑ̂0(x) =
8π
3

γ1/2

F ′1/2 (α0(x))
. (2.27)
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The density profile n̄0(r) can be written as in (2.10), with

n̂0(x) =
3

8π
γ−3/2 F1/2 (α0(x)). (2.28)

The reduced profiles n̂0(x) and ϑ̂0(x) depend on the parameters α(0)
0 and T̂ = γ−1, but

not explicitly on Z. They can be found by numerical integration of the differential
equation (2.20).

3. Electron density profile
In this section we study the equilibrium electron density profile n̄0(r) in some more
detail. The Fermi–Dirac integral F1/2(z), defined in (2.18), behaves for large z as
(Landau and Lifshitz 1968)

F1/2(z) = 2
3 z

3/2 +
π2

12z1/2
+O(z−5/2). (3.1)

At small distance, the potential φ0(r) diverges as Ze/r, so that we find from (2.28)

n̂0(x) ∼ 1
4πx3/2

as x→ 0, (3.2)

independent of α(0)
0 and γ. The strong attraction by the nucleus causes singular

behaviour of the electron density. At large distance from the nucleus, the potential
is screened. By expansion in (2.20), one finds

χ(x) ∼ χ∞ e−κ̂x as x→∞, (3.3)

with κ̂ given by

κ̂2 =
4π

ϑ̂
(0)
0

. (3.4)

Correspondingly, the electrostatic potential behaves as

φ0(r) ∼ χ∞ Ze
exp(−κr)

r
as r →∞, (3.5)

with inverse screening length κ given by

κ2 =
4πe2

ϑ
(0)
0

. (3.6)

The reduction factor χ∞ must be determined numerically from (2.20). From (2.17),
we find for the density profile

n̄0(r) ∼ n(0)
0 + χ∞

Zκ2

4π
exp(−κr)

r
as r →∞. (3.7)

The dimensionless profile n̂0(x) behaves as

n̂0(x) ∼ n̂(0)
0 + χ∞

κ̂2

4π
exp(−κ̂x)

x
as x→∞. (3.8)

In the low-temperature limit, κ is the inverse of the Thomas–Fermi screening
length,

κ2 =
3
ba0

(
πn

(0)
0

2

)1/3

(T = 0). (3.9)
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At high temperature, κ2 is given by the Debye–Hückel expression

κ2 =
4πn(0)

0 e2

kBT
(T →∞). (3.10)

The screening of the potential shows that the integral of the density profile is∫ ∞
0

[n0(r)− n(0)
0 ]r2 dr =

Z

4π
. (3.11)

Correspondingly, ∫ ∞
0

[n̂0(x)− n̂(0)
0 ]x2 dx =

1
4π
. (3.12)

Electrons that at distance r have kinetic energy p2/2m less than eφ0(r) are
bound. Hence we can write the density profile as a sum of bound- and free-electron
contributions:

n̄0(r) = n̄b(r) + n̄f (r), (3.13)

with n̄b(r) given by

n̄b(r) =
4
π1/2

λ−3
dBF1/2

(
µ

(0)
0 + eφ0(r)
kBT

,
eφ0(r)
kBT

)
, (3.14)

with F1/2(z, y0) defined by

F1/2(z, y0) =
∫ y0

0

y1/2

exp(y − z) + 1
dy. (3.15)

The degree of ionization

If =
Zf
Z

(3.16)

follows from ∫ ∞
0

[n̄f (r)− n(0)
0 ]r2 dr =

Zf
4π
. (3.17)

One can now identify Z0 = Zf . We recall that Z0 nie is the charge density of
the neutralizing background. If the ion density ni is prescribed then the relation
n

(0)
0 = Zf ni provides a self-consistent equation from which n(0)

0 can be determined
as a function of Z, ni and temperature T . Conversely, if the free-electron density
is given then the ion density can be calculated as ni = n

(0)
0 /Zf . Corresponding to

(3.14), we define the dimensionless profile

n̂b(x) =
3

8π
γ−3/2 F1/2(α0(x), γ χ(x)). (3.18)

The degree of ionization as a function of α(0)
0 and γ is

If = 4π
∫ ∞

0
[n̂f (x)− n̂(0)

0 ]x2 dx. (3.19)

In Fig. 1 we plot If as a function of reduced temperature T̂ for several asymp-
totic electron densities n̂(0)

0 . It is somewhat surprising that the degree of ionization
first decreases with temperature before increasing monotonically at higher temper-
ature. In Fig. 2 we plot If as a function of density n̂(0)

0 for several values of T̂ . The
degree of ionization first decreases with density before increasing monotonically
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Figure 1. Degree of ionization If , as given by (3.19), as a function of reduced temperature
T̂ for reduced density n̂(0)

0 = 10−5 (solid line), 10−4 (long dashes), 10−3 (short dashes) and
10−2 (dotted line).
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0.9

0.8

0.7

0
10–9

I f

n̂ (0)
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0.2
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Figure 2. Degree of ionization If as a function of reduced density n̂(0)
0 for reduced

temperature T̂ = 0 (solid line), 0.01 (long dashes), 0.1 (short dashes), and 1 (dotted line).

at higher density. Thus the degree of ionization If depends in a complicated way
on asymptotic electron density n̂

(0)
0 and temperature T̂ , owing to the interplay of

the change of shape of the self-consistent electrostatic potential φ0(r) and the oc-
cupation of levels in this potential. In Fig. 3 we plot the profile n̂0(x) as a function
of dimensionless distance x for density n̂

(0)
0 = 10−5 and various reduced tempera-

tures T̂ . In Fig. 4 we present similar plots for n̂(0)
0 = 0.001. It is evident that for

fixed asymptotic density the electron density in the intermediate range decreases
with temperature due to ionization. In Fig. 5 we plot the function χ(x) exp(κ̂x) as
a function of x for density n̂

(0)
0 = 10−5 and various reduced temperatures T̂ . The

function starts at unity for x = 0 and tends to the reduction factor χ∞ for large
x. The reduction factor χ∞ first decreases and then increases with temperature. In
Fig. 6 we present similar plots for n̂(0)

0 = 0.001.
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Figure 3. Equilibrium electron density profile n̂0(x) as a function of dimensionless distance
x for asymptotic density n̂(0)

0 = 10−5 and reduced temperature T̂ = 0 (solid line), 0.05 (long
dashes), 0.1 (short dashes), 0.2 (dotted line), 0.5 (long dashes, dots) and 1 (short dashes,
dots).
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Figure 4. Equilibrium electron density profile n̂0(x) as a function of dimensionless distance
x for asymptotic density n̂(0)

0 = 0.001 and reduced temperature T̂ = 0 (solid line), 0.2 (long
dashes), 0.5 (short dashes), 1 (dotted line), 2 (long dashes, dots) and 3 (short dashes, dots).

4. Induced dipole moment
In order to calculate the photoabsorption cross-section, one considers the linear
response of the electron–1-ion system to a uniform oscillating electric field E(0)(t) =
E(0)
ω exp(−iωt). The equations of motion (2.1) are linearized to (Felderhof et al.

1995b)

∂n1

∂t
+∇ · (n̄0v1) = 0, (4.1a)

m
∂v1

∂t
= −∇(ϑ0n1) + e∇φ1, (4.1b)

and Poisson’s equation (2.2) becomes

∇2φ1 = 4πn1e, (4.2)
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Figure 5. The function χ(x) exp(κ̂x), as given by (2.20) and (3.4), versus x for density
n̂(0)

0 = 10−5 and reduced temperature T̂ = 0 (solid line), 0.001 (long dashes), 0.003 (short
dashes), 0.02 (dotted line), 0.05 (long dashes, dots), 0.1 (short dashes, dots), 0.2 (double
dashes) and 1 (triple dashes).
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Figure 6. The function χ(x) exp(κ̂x), as given by (2.20) and (3.4), versus x for density
n̂(0)

0 = 0.001 and reduced temperature T̂ = 0 (solid line), 0.05 (long dashes), 0.1 (short
dashes), 0.2 (dotted line), 0.3 (long dashes, dots), 0.5 (short dashes, dots), 1 (double dashes)
and 3 (triple dashes).

since ρex vanishes for a uniform applied field. The velocity field v1(r, t) can be derived
from a streaming potential, v1 =∇S1, with

m
∂S1

∂t
= −ϑ̄0n1 + eφ1. (4.3)

We put

n1(r, t) = nω(r) exp(−iωt), (4.4a)

φ(r, t) = φω(r) exp(−iωt), (4.4b)

S1(r, t) = Sω(r) exp(−iωt), (4.4c)

and define

ρω = −enω, (4.5a)
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σω = − iωm
e

Sω. (4.5b)

The equations for the Fourier amplitudes ρω, σω and φω then read

ω2ρω +
e2

m
∇ · (n̄0∇σω) = 0, (4.6a)

σω =
ϑ̄0

e2 ρω + φω, (4.6b)

∇2φω = −4π ρω. (4.6c)

We write

φω = φ(0)
ω + φ(1)

ω , (4.7a)

σω = σ(0)
ω + σ(1)

ω , (4.7b)

where φ(0)
ω and σ(0)

ω are the values for the electron–0-ion system,

φ(0)
ω (r) = −E(0)

ω · r, (4.8a)

σ(0)
ω (r) = −E(0)

ω · r. (4.8b)

The deviations due to the presence of the ion satisfy

ω2ρ(1)
ω +

e2

m
∇ · (n̄0∇σ(1)

ω ) =
e2

m
E(0)
ω ·∇n̄0, (4.9a)

σ(1)
ω −

ϑ̄0

e2 ρ
(1)
ω − φ(1)

ω = 0, (4.9b)

∇2φ(1)
ω + 4π ρ(1)

ω = 0. (4.9c)

For frequencies less than the plasma frequency ωp0 = (4πn(0)
0 e2/m)1/2, both the

streaming potential and the electrostatic potential have dipolar character at large
distances, of the form

σ(1)
ω = φ(1)

ω ∼
p(1)
ω · r
r3 as r →∞. (4.10)

For frequencies higher than the plasma frequency, there is an additional undamped
outgoing plasma wave. The extinction cross-section σext(ω) follows from the dipole
moment p(1)

ω .
We choose the z axis in the direction of E(0)

ω and use spherical coordinates (r, θ, ϕ).
The fields σ(1)

ω , φ(1)
ω and ρ(1)

ω are expressed in terms of dimensionless radial functions
G(x), H(x) and K(x) by the definitions

σ(1)
ω (r) =

Z4/3e

ba0

G(x)
x[n̂0(x)]1/2

cos θ, (4.11a)

φ(1)
ω (r) =

Z4/3e

ba0

H(x)
x

cos θ, (4.11b)

ρ(1)
ω (r) =

Z2e

b3a3
0

K(x)
x

cos θ. (4.11c)

Upon substitution into (4.9), one then finds the radial equations

d2G

dx2 −
(

2
x2 +

n̂′0
xn̂0
− n̂′

2

0

4n̂2
0

+
n̂′′0
2n̂0

)
G + b3 Ω2 K

n̂
1/2
0

= Ê
(0)
ω

xn̂′0
n̂0

1/2
, (4.12a)
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ϑ̂0K =
G

n̂0
1/2
−H, (4.12b)

d2H

dx2 −
2
x2H + 4πK = 0, (4.12c)

with the dimensionless frequency Ω defined by

Ω =
~a0

Ze2 ω, (4.13)

and the dimensionless field Ê(0)
ω defined by

Ê(0)
ω =

b2a2
0

Z5/3e
E(0)
ω . (4.14)

Eliminating K, we can cast (4.12) in the form of a set of coupled differential equa-
tions

d2G

dx2 + aGGG + aGHH = S, (4.15a)

d2H

dx2 + aHGG + aHHH = 0, (4.15b)

with coefficient functions

aGG = − 2
x2 −

n̂′0
xn̂0

+
n̂′

2

0

4n̂2
0
− n̂′′0

2n̂0
+
b3Ω2

n̂0ϑ̂0
, (4.16a)

aGH = − b3Ω2

n̂
1/2
0 ϑ̂0

, (4.16b)

aHG =
4π

n̂
1/2
0 ϑ̂0

, (4.16c)

aHH = − 2
x2 −

4π

ϑ̂0
, (4.16d)

and with source term

S = Ê(0)
ω

xn̂′0
n̂

1/2
0

. (4.17)

The form of (4.15) is convenient for numerical integration. We emphasize that (4.15)
does not depend on the nuclear charge Ze. In the limit T → 0, the equations take
the same form, with the substitution

lim
T→0

8π

ϑ̂0
= 3

(
1
2πn̂0

)1/3
. (4.18)

We introduce the dimensionless plasma frequency Ωp0 as

Ωp0 =
(

4πn̂(0)
0

b3

)1/2

=
C3/4

b3/2
=
~a0

Ze2 ωp0, (4.19)

and the variable α̂ as

α̂ = κ̂

(
1− Ω2

Ω2
p0

)1/2

, (4.20)

with the negative imaginary root chosen for Ω2 > Ω2
p0. For Ω > Ωp0, the solution
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of (4.15) corresponds asymptotically to outgoing plasma waves of the form

G(x) ∼ − b3Ω2

α̂2(n̂(0)
0 )1/2

Qω xk1(α̂x) + p̂(1)
ω

(n̂(0)
0 )1/2

x
, (4.21a)

H(x) ∼ −4πQω
α̂2 xk1(α̂x) +

p̂
(1)
ω

x
as x→∞, (4.21b)

where k1(z) = e−z(1 + z)
/
z2 is a modified spherical Bessel function, and with

coefficients Qω and p̂(1)
ω to be determined from the behaviour of G(x) and H(x) for

small x. From (4.13), we find for the asymptotic behaviour of the function K(x)

K(x) ∼ Qω xk1(α̂x) as x→∞. (4.22)

For 0 < Ω < Ωp0, the solutions have the same asymptotic form, but then the
function k1(α̂x) is exponentially damped, and the dipolar terms proportional to
p̂

(1)
ω dominate, as shown already in (4.10).
From (4.15), one finds for the behaviour of the functions G(x) and H(x) for

small x

G(x) ∼ Ê
(0)
ω

2π1/2
x5/4 + C1x

1/2+
√

33/4 as x→ 0, (4.23a)

H(x) ∼ C2 x
2 as x→ 0, (4.23b)

with as-yet unknown coefficients C1 and C2, which must be adjusted such as to re-
cover the asymptotic behaviour shown in (4.21). It is convenient to consider the pair
of functions H(x),K(x) instead of G(x), H(x), since in the asymptotic behaviour of
the function K(x) the dipolar terms cancel. If the differential equations (4.15) are
solved with initial behaviour as shown in (4.23) with chosen values C1γ and C2γ

then the asymptotic behaviour of the functions Hγ(x) and Kγ(x) is

Kγ(x) ∼ PKγx i1(α̂x) +QKγxk1(α̂x) as x→∞ (4.24a)

Hγ(x) ∼ −4π
α̂2 Kγ(x) + PHγx

2 +
QHγ
x

as x→∞ (4.24b)

with certain coefficients PKγ , QKγ , PHγ and QHγ . If we choose three trial pairs of
values (C1γ , C2γ) then we obtain three pairs of functions (Kγ(x), Hγ(x)), and can
construct a linear combination

K(x) =
3∑
γ=1

aγ Kγ(x), (4.25a)

H(x) =
3∑
γ=1

aγ Hγ(x), (4.25b)

with coefficients a1, a2 and a3 satisfying

a1 + a2 + a3 = 1, (4.26a)
3∑
γ=1

aγ PKγ = 0, (4.26b)

3∑
γ=1

aγ PHγ = 0. (4.26c)
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The coefficients (PKγ , QKγ , PHγ , QHγ) are found from the values of the solutions
Kγ(x) and Hγ(x) at a pair of large distances x1, x2. The coefficients a1, a2 and a3

can be determined from the three equations (4.26). The desired value of the dipole
moment follows from

p̂(1)
ω =

3∑
γ=1

aγ QHγ , (4.27)

and the value of the coefficient Qω can be found similarly. One can improve the
numerical accuracy of the result by repeating the calculation with the found values
C1 and C2 as one of the trial pairs. The procedure can be repeated several times
until the coefficient p̂(1)

ω does not change appreciably.
By comparison of (4.10), (4.11) and (4.19), it follows that the magnitude of the

dipole moment p(1)
ω is

p(1)
ω = Zeap̂(1)

ω , (4.28)

with ion radius

a = Z−1/3ba0. (4.29)

The single-ion polarizability α′1(ω) is defined from the relation (Felderhof et al.
1995a).

p(1)
ω = α′1(ω)E(0)

ω . (4.30)

The corresponding dimensionless form is

p̂(1)
ω = α̂′1(Ω)Ê(0)

ω . (4.31)

By use of (4.14), one finds

α′1(ω) = a3α̂′1(Ω). (4.32)

This relation allows one to cast the extinction cross-section in a scaling form.

5. Photoabsorption
In the electric dipole approximation, the cross-sections for absorption and scat-
tering of radiation can be calculated from the electric dipole polarizability α′1(ω),
defined in (4.30). The extinction cross-section is the sum of the cross-sections for
absorption and scattering:

σext(ω) = σabs(ω) + σsca(ω). (5.1)

For the present model, the cross-sections vanish in the range 0 < ω < ωp0. The ab-
sorption for ω > ωp0 is due to conversion of electromagnetic energy into longitudinal
plasma waves. Previously a simple relation was derived between the cross-sections
for absorption and scattering at the plasma frequency (Felderhof et al. 1995b):

σsca(ωp0+)
σext(ωp0+)

= 2
s3

c3 , s2 =
n

(0)
0 ϑ

(0)
0

m
. (5.2)

The ratio s/c usually is quite small, so that scattering can be neglected relative
to absorption. In the following we consider only the extinction cross-section. It is
given by (Felderhof et al. 1995b)

σext(ω) =
4π
c

(ω2 − ω2
p0)1/2 Imα′1(ω). (5.3)
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By use of (4.13) and (4.32), this can be expressed as

σext(ω) =
4πe2

~c
b3a2

0 σ̂ext(Ω), (5.4)

with the dimensionless cross section

σ̂ext(Ω) = (Ω2 − Ω2
p0)1/2 Im α̂′1(Ω). (5.5)

Thus the cross-section σext(ω) takes a scaling form with frequency ω given by (4.13).
At the plasma frequency, the extinction cross-section σ̂ext(Ωp0+) does not vanish,

since the square root in (5.5) is cancelled by a corresponding singularity in Im
α̂′1(Ω). The limiting value is

σ̂ext(Ωp0+) = β̂(1)Ωp0 (5.6)

with a coefficient β̂(1) that can be found from the solution of (4.15) for frequency
Ωp0. At this particular frequency, the function H(x) increases in proportion to x
for large x. One can define the limiting slope

H∞ = lim
x→∞

H(x)
x

at Ω = Ωp0. (5.7)

The coefficient β̂(1) in (5.6) is given by (Felderhof et al. 1995b)

β̂(1) =
4

3κ̂
H2
∞. (5.8)

For high frequency Ω, the reduced cross-section σ̂ext(Ω) shows universal be-
haviour, and becomes independent of asymptotic electron density n̂(0)

0 and reduced
temperature T̂ . The behaviour is identical to that found by Ball et al. (1973) for
the atom in vacuum:

σ̂ext(Ω) ∼ 1024

81
√

3

K2
ν

π2

1
Ω2 =

0.70144
Ω2 as Ω→∞, (5.9)

with coefficient

Kν =
∫ ∞

0
z−1/2Jν(z) dz, ν =

√
33
6
, (5.10)

where Jν(z) is the Bessel function of fractional order ν. The numerical value for
the integral is Kν = 0.973 91. At high frequency, the absorption is due to emission
of plasma waves by electrons close to the nucleus, where the reduced density n̂0(x)
has the universal behaviour shown in (3.2). A more detailed explanation of the
high-frequency behaviour shown in (5.9) will be presented elsewhere (Ishikawa and
Felderhof 1998b).

The intermediate behaviour of the cross-section σ̂ext(Ω) is characterized by a sin-
gle broad resonance, dependent on asymptotic electron density and on temperature.
A rough description of the resonance involves two sum rules, which follow from the
theory for a general equilibrium profile. The first sum rule reads (Felderhof et al.
1995b)

RT ≡
∫ ∞

Ωp0

Ω
(Ω2 − Ω2

p0)1/2
σ̂ext(Ω) dΩ = 1

2π(g0 − β̂(0))Ω2
p0, (5.11)

where the coefficient g0 is found from equation (3.14) of Felderhof et al. (1995b) as

g0 =
1

4πn̂(0)
0

, (5.12)
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and the coefficient β̂(0) is given by equation (6.29) of Felderhof et al. (1995b) as

β̂(0) =
2
κ̂2H∞. (5.13)

The second sum rule reads (Felderhof et al. 1995b)∫ ∞
Ωp0

1
Ω(Ω2 − Ω2

p0)1/2
σ̂ext(Ω) dΩ = 1

2π(g1 − β̂(0)), (5.14)

where the coefficient g1 is identical with the polarizability at zero frequency,

g1 = α̂′1(0), (5.15)

as follows from equation (3.9) in Felderhof et al. (1995b) (note that in equation (7.16)
of that paper the factor 1

2π should be deleted). Thus, in order to implement the
sum rules, we need the solution of (4.15) at the two special frequencies Ω = 0 and
Ω = Ωp0. A mean absorption frequency may be defined as

Ωσ =
(
g0 − β̂(0)

g1 − β̂(0)

)1/2

Ωp0. (5.16)

We have checked the sum rules for several cases by comparison with the complete
solution at all frequencies, and found good agreement.

The integral in (5.11) may be regarded as a measure of the integrated cross-
section. In Fig. 7 we plot its value as a function of dimensionless temperature for
various values of the asymptotic density n̂(0)

0 . For low density and temperature, one
finds agreement with the value of Ball et al. (1973):∫ ∞

0
σ̂ext(Ω) dΩ =

64
9π

= 2.2635 (n̂(0)
0 = 0, T̂ = 0), (5.17)

corresponding to β̂(0)Ω2
p0 = 0 in this limit. In Fig. 8 we plot the limiting value

σ̂ext (Ωp0+) = β̂(1)Ωp0 as a function of temperature T̂ for various densities n̂(0)
0 . Ball

et al. (1973) found for the limiting value

σ̂ext(Ωp0+) = 32
9

√
3 (4.36)2 = 117.1 (n̂(0)

0 = 0, T̂ = 0). (5.18)

In Fig. 9 we plot the ratio Ωσ/Ωp0, as given by (5.16), as a function of temperature
T̂ for various densities n̂(0)

0 .
The results of our analysis are strikingly summarized in Fig. 7. This shows that

the integrated extinction cross-section depends strongly on both the asymptotic
electron density n(0)

0 and the temperature T . The effect of temperature is the most
dramatic. For fixed ion density, the integrated cross-section drops by orders of
magnitude as the temperature increases. At the same time, the dependence on
frequency changes, as indicated by Figs 8 and 9.

6. Approximate description
The numerical solution of (4.15) allows one to calculate the frequency-dependent
extinction cross-section of an ion immersed in a plasma, within the framework of
Bloch’s hydrodynamic model. We have chosen a particular form for the equilib-
rium electron density profile of the ion, but other forms could be treated with the
same amount of effort. The scheme requires a separate solution for each frequency,
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Figure 7. Integrated cross-section RT , as defined by (5.11), as a function of reduced tem-
perature T̂ for density n̂(0)

0 = 10−7 (solid line), 10−6 (long dashes), 10−5 (short dashes), 10−4

(dotted line), 10−3 (long dashes, dots), 10−2 (short dashes, dots).
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Ω
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Figure 8. Reduced cross-section σ̂ext(Ωp0+) at the plasma frequency Ωp0 as a function of
reduced temperature T̂ for various densities n̂(0)

0 , as in Fig. 7.

and therefore is fairly time-consuming. It is worthwhile to look for an approxi-
mate description, involving only a limited number of parameters and accounting
for the main features of the absorption spectrum. Padé approximants provide the
necessary tool.

As shown in previous work (Felderhof et al. 1995b, c), the exact polarizability
α̂′1(Ω) can be cast in the form

α̂′1(Ω) =
1

Ω2 − Ω2
p0

[AΩ2Γ(y)− g1Ω2
p0] (6.1)

with the coefficient A given by

A = g1 − β̂(0) (6.2)
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Figure 9. The ratio Ωσ/Ωp0, as given by (5.16), as a function of reduced temperature T̂ for
various densities n̂(0)

0 , as in Fig. 7.

and the complex variable y defined by

y =
1
M

(
1− Ω2

Ω2
p0

)1/2

(6.3)

with the negative imaginary root chosen for Ω2 > Ω2
p0 and with coefficient

M =
(
g0 − g1

A

)1/2

. (6.4)

The function Γ(y) is required to have the behaviour

Γ(0) = 1, Γ(y) ∼ 1
y2 as y →∞. (6.5)

These conditions guarantee that the sum rules (5.11) and (5.14) are satisfied. Fur-
thermore, the behaviour near the plasma frequency is described by

Γ(y) = 1−Qy +O(y2) (6.6)

for small y, with coefficient

Q = M β̂(1)/A. (6.7)

The high-frequency behaviour given by (5.9) shows that the function Γ(y) has the
asymptotic expansion

Γ(y) =
1
y2 +

D

y3 +O(y−4), (6.8)

with coefficient

D = − 1024

81
√

3π2

K2
ν

AM 3Ω3
p0
. (6.9)

The approximate expression

ΓE(y) =
1

1 +Qy + y2 +
y2

1 + Ey

, (6.10)
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with coefficient

E =
−1

Q +D
, (6.11)

has the properties shown in (6.6) and (6.8). The extrapolation function ΓE(y) has
three poles in the complex y plane. In order to determine the polarizability α̂′1(Ω)
in the form (6.1) with approximate function ΓE(y), only the solution of (4.17) for
Ω = 0 and Ω = Ωp0 is required.

We can improve the approximation by including a larger number of poles. The
improved approximation is constructed conveniently by the method of N -point
Padé approximants. Thus, instead of (6.10), we write

Γp+1(y) =
1

1 +Qy + y2 + y2 ψp(y)
, (6.12)

where ψp(y) is a ratio of two polynomials. The coefficients in the polynomials can be
determined from known values of the function Γ(y) at p + 1 points on the positive
y axis. Elsewhere, two of us have discussed the method in detail (Cichocki and
Felderhof 1994). It follows from (6.3) that positive y corresponds to pure imaginary
frequency Ω. For such values, α̂ in (4.20) is positive, and the function k1(α̂x) in (4.21)
decays exponentially. This implies that the asymptotic behaviour of the functions
G(x) and H(x) is no longer described by (4.21) if α̂ is larger than κ̂, since then the
spatial variation of the profiles n̂0(x) and ϑ̂0(x) must be taken into account. This
can be done with some effort, and accurate values for the dipole moment can again
be determined. Besides the solution of (4.15) for Ω = 0 and Ω = Ωp0 one needs the
solution for p + 1 positive imaginary frequencies. We have found that even more
rapid convergence is obtained by using p + 1 points on the negative imaginary y
axis, corresponding to p + 1 real frequencies. At the same time, one uses the p + 1
conjugate points on the positive imaginary y axis and the corresponding complex-
conjugate values of the function Γ(y). We have employed this method in our explicit
calculations.

In the following we show plots of the cross-section σ̂ext(Ω) as a function of Ω for
various values of number density n̂(0)

0 and temperature T̂ , as calculated from the nu-
merical solution of (4.15), as calculated from (6.1) with the approximation ΓE(y), as
given by (6.10) for the function Γ(y), and as calculated with the Padé approximant
(6.12). The calculations show that the approximation ΓE(y) is only qualitatively
correct, and that accurate results require either the complete numerical solution
of (4.15) at a dense set of frequencies or the solution by Padé approximants. The
latter method is much faster than the former.

In Fig. 10 we plot the dimensionless cross-section σ̂ext(Ω) as a function of fre-
quency for reduced density n̂

(0)
0 = 1.28 × 10−6 and reduced temperature T̂ =

0.008 45. This corresponds to 10% of solid density and a temperature of 20 eV
for iron (Z = 26). In Fig. 11 we present similar plots for the same density n̂

(0)
0 =

1.28 × 10−6 and the higher temperature T̂ = 0.0845. In both cases the high-
frequency asymptote 0.701 44/Ω2 follows from (5.9). The results from the Padé
approximant method cannot be distinguished from the exact ones on the scale of
the figure.

In the Padé approximant method we have used the points

yj =
−i

p− j + 1

√
500(j + 1), j = 0, . . . , p (6.13)
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Figure 10. Reduced cross-section σ̂ext(Ω) as a function of frequency Ω for density
n̂(0)

0 = 1.28 × 10−6 and temperature T̂ = 0.008 45, as calculated from the numerical so-
lution of (4.15) (solid line), and as given by (5.5) and (6.1) with approximate function ΓE(y)
given by (6.10) (dash-dotted line). The result of the Padé approximant method cannot be
distinguished on the scale of the figure from the solid line. The curves tend to the universal
asymptote 0.701 44/Ω2 (dotted line).
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Figure 11. As in Fig. 10, but for density n̂(0)
0 = 1.28× 10−6 and temperature T̂ = 0.0845.

with p = 7 in Fig. 10 and p = 9 in Fig. 11. At the same time, the points {−yj} and
corresponding values {Γ(−yj) = Γ∗(yj)} are used. The range of points is chosen
such as to cover a sufficiently wide range of frequencies. The values of the param-
eters A,M and Q for Fig. 10 are A = 2056.6, M = 4.8957 and Q = 7.6549. The
corresponding values for Fig. 11 are A = 958.23, M = 3.9844 and Q = 7.7003.

Finally, we show in Fig. 12 the dimensionless cross-section σ̂ext(Ω) at the low den-
sity n̂(0)

0 = 1.28×10−6 for a range of temperatures, and compare with the numerical
results of Ball et al. (1973) for the atom (n̂(0)

0 = 0) at zero temperature. The decrease
of the cross-section at intermediate frequencies with increasing temperature is due
to ionization.
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Figure 12. Reduced cross-section σ̂ext(Ω) as a function of frequency Ω for density
n̂(0)

0 = 1.28 × 10−6 and temperature T̂ = 0 (solid line), 0.000 845 (long dashes), 0.008 45
(short dashes), 0.0267 (dotted line), 0.0845 (dash-dotted line). We compare with the numer-
ical results of Ball et al. (1973) (diamonds).

7. Discussion
We have studied photoabsorption by an ion immersed in a plasma on the basis of
an ion correlation model and the Thomas–Fermi approximation for the equilibrium
electron distribution. The collective motion of the electron cloud is treated within
the framework of Bloch’s classical hydrodynamic model. Single-electron effects and
quantum dynamics have been left out of consideration. The treatment provides a
qualitative picture of the frequency-dependent photoabsorption cross-section. In
the approximate model, the cross-section is found to scale with the nuclear charge.
It also depends strongly on plasma density and temperature. To our knowledge, the
present calculation is the first to yield a comprehensive picture of photoabsorption
by an ion immersed in a plasma for any ion charge, density and temperature. We
believe that the picture captures the gross features of the actual photoabsorption
cross-section correctly, and regard it as a first step towards more elaborate and
detailed calculations.

Our numerical results for the degree of ionization, the equilibrium density pro-
file and the photoabsorption cross-section are shown for several values of the re-
duced temperature T̂ and the reduced asymptotic free-electron density n̂

(0)
0 . It

may be useful to consider values of these reduced parameters relevant for future
experiments in high-density plasmas. We choose two elements that have already
been used in plasma transmission experiments (Winhart et al. 1995; Merdji et al.
1998): aluminium (Al, Z = 13) and samarium (Sm, Z = 62). The collective effects
in photoabsorption on which we have focused our attention will be important in
high-density plasmas. Large lasers of future generations will allow one to approach
plasma densities of the order of solid density in X-ray transmission experiments in
radiatively heated targets. In such plasmas the plasma frequency will range from
about 15 eV to a few tens of eV. The corresponding reduced temperature T̂ lies
in the range 0.02–0.10 for Al and in the range 0.0026–0.013 for Sm. The reduced
asymptotic density n̂

(0)
0 corresponding to solid density will equal approximately

3.67 × 10−5 Z0 (Al) for Al and 7.88 × 10−7Z0 (Sm) for Sm. We recall that the ef-
fective charge number Z0 = IfZ depends on the degree of ionization If and hence
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on temperature. The reduced density n̂(0)
0 may be found approximately from Figs 1

and 2, or more accurately from the self-consistent relation Z0 = IfZ. Finally, we
note that our theoretical prediction for the photoabsorption cross section has been
compared with recent experimental results (Theobald et al. 1998).
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