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We analyze the doubly differential electron distribution in atomic above-threshold ionization by a
linearly-polarized short-laser pulse. We generalize the one-dimensional (1D) simple man’s model
(SMM) of Arbó et al. [19], to a three dimensional (3D) description by using the saddle-point approxima-
tion (SPA). We prove that the factorization of the photoelectron spectrum in terms of intracycle and inter-
cycle interference patterns can be extended to the doubly differential momentum distribution. Intercycle
interference corresponds to the well-known ATI peaks of the photoelectron spectrum arising from the
superposition of electron trajectories released at complex times during different optical cycles, whereas
intracycle interference comes from the coherent superposition of trajectories released within the same
optical cycle. We verify the SPA predictions by comparison with time-dependent distorted wave
calculations and the solutions of the full 3D time-dependent Schrödinger equation (TDSE). An analytical
expression for the complete interference pattern within the SPA is presented showing excellent agree-
ment with the numerical calculations. We show that the recently proposed semiclassical description
based on the SMM in terms of a diffraction process at a time grating remains unchanged when consider-
ing the full 3D problem within the SPA.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction double-slit interference pattern has been studied in near-single cy-
According to the three-step model, photoelectrons can be classi-
fied into direct and rescattered electrons [1–3]. Electrons are emitted
by tunneling through the potential barrier formed by the combina-
tion of the atomic potential and the external strong field. Tunneling
occurs within each optical cycle predominantly around the maxima
of the absolute value of the electric field. After ionization, direct
electrons can escape without being strongly affected by the residual
core potential. The classical cutoff energy for this process is 2Up.
After being accelerated back by the laser field, a small portion of
electrons are rescattered by the parent ion and can achieve a kinetic
energy E of up to 10Up. Trajectories that correspond to direct ioni-
zation ðE < 2UpÞ are crucial in the formation of interference pat-
terns in photoelectron spectra. Quantum interference within an
optical cycle was first reported (as far as we know) in Ref. [4] and
theoretically analyzed and experimentally observed by Paulus et
al. in [5] both for negative ions. A thorough saddle-point analysis
with the strong field approximation can be found in Becker’s review
[6]. Non-equidistant peaks in the photoelectron spectrum was first
calculated for neutral atoms by Chirila et al. [7]. A temporal
All rights reserved.
cle pulses both experimentally [8,9] and theoretically [6,10]. A
time-energy analysis of above-threshold ionization has recently
been presented [11]. Near threshold oscillations in angular distri-
bution were explained as interferences of electron trajectories
[12] and recently measured by [13]. Diffraction fringes have been
experimentally observed in photoionization of He atoms [9] and
photodetachment in H� and [14,15] F� ions by femtosecond pulses
for fixed frequency [16] and theoretically analyzed [17]. Diffraction
patterns were also found in spectra of laser-assisted Auger decay,
whose gross structure of sidebands were explained as the interfer-
ence between electrons emitted within one period [18]. The inter-
ference pattern in multi-cycle photoelectron spectra can be
identified as a diffraction pattern at a time grating composed of
intracycle and intercycle interferences [17,19]. While the latter gives
rise to the well-known ATI peaks [20–22], the former leads to a
modulation of the ATI spectrum offering information on the sub-cy-
cle ionization dynamics. This analysis was based on a 1D semiclas-
sical model closely following the ‘‘simple man’s model’’ (SMM). As a
thorough study of the full doubly differential distributions is not
possible within a 1D model, a theory which considers the full spa-
tial dimensions of the atomic photoionization is needed to identify
the different interference processes involved.

In the present communication, we extend our previous analysis
to three-dimensional momentum distribution. We show that the
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description in terms of a time grating remains valid for the doubly
differential momentum distribution of ejected electrons by using
the saddle-point approximation (SPA) where complex release
times replace the SMM real release times. An analytical expression
for the doubly differential momentum distribution within the SPA
is found, extending the previous semiclassical 1D SMM expression
[19] to 3D. We gauge the SPA results by comparison with
numerical results of the 3D time-dependent distorted wave
Coulomb–Volkov approximation (CVA), its strong field approxima-
tion (SFA) [3,7,23,25,26] and solutions of the full time-dependent
Schrödinger equation (TDSE). In addition to flat-top pulses provid-
ing us with a clear physical picture, we also analyze the cases of
more realistic pulse shapes from an experimental viewpoint.

The paper is organized as follows. In Section 2 we extend the
previously presented semiclassical analysis [19] and show that
the separation of intracycle and intercycle interferences and, thus,
the interpretation of the interference pattern in terms of a diffrac-
tion at a time grating remains intact when studying the doubly dif-
ferential distributions within the SPA. In Section 3, we compare
quantum mechanical methods, i.e., SFA, CVA, and the exact numer-
ical solution of the full time-dependent Schrödinger equation
(TDSE) with the prediction of the SPA and discuss similarities
and differences, paying special attention on the effect of the ionic
Coulomb potential of the core on the momentum distribution of
the escaping electron.

2. Theory

We consider an atom in the single active electron approxima-
tion interacting with a linearly polarized laser field~FðtÞ. The Ham-
iltonian of the system in the length gauge is

H ¼
~p2

2
þ VðrÞ þ~r �~F ðtÞ; ð1Þ

where VðrÞ is the atomic central potential and ~p and ~r are the
momentum and position of the electron, respectively. The term
~r �~F ðtÞ couples the initial state j/ii to the continuum final state
j/f i with momentum~k and energy E ¼ k2

=2. The TDSE for the Ham-
iltonian of Eq. (1) governs the evolution of the electronic state
j wðtÞi. We calculate the photoelectron momentum distributions as

dP

d~k
¼j Tif j2; ð2Þ

where Tif is the T-matrix element corresponding to the transition
/i ! /f .

While a small fraction of photoelectrons undergoes rescattering
by the remaining ion, here we consider only direct photoelectrons
(with energies E < 2Up), which dominate the total ionization yield.
To deal with interference signatures within the strong field
approximation, we closely follow the ‘‘saddle-point approxima-
tion’’ (SPA) [7,24,26,3].

A starting point is the saddle-point approximation of the SFA,
which leads to a transition amplitude from the initial state of en-
ergy �Ip to the continuum state [3]

Tif ð~kÞ ¼ �
XM

i¼1

G tðiÞr ;
~k

� �
eiS tðiÞrð Þ: ð3Þ

Here, M is the number of trajectories born at ionization times tðiÞr

and reaching a given final momentum~k, and GðtðiÞr ;
~kÞ is the ioniza-

tion amplitude,

G tðiÞr ;
~k

� �
¼

2piF tðiÞr

� �
~kþ~A tðiÞr

� ���� ���
264

375
1=2

d� ~kþ~A tðiÞr

� �� �
; ð4Þ
where d�ð~vÞ is the dipole element of the bound-continuum transi-
tion. In Eq. (3), S is given by the Volkov action [27]

SðtÞ ¼ �
Z 1

t
dt0
ð~kþ~Aðt0ÞÞ2

2
þ Ip

" #
: ð5Þ

where ~AðtÞ ¼ �
R t
�1 dt0~Fðt0Þ is the vector potential of the laser field

divided by the speed of light. In Eqs. (3) and (5) the influence of
the atomic core potential on the continuum state of the receding
electron is neglected and, therefore, the momentum distribution
is a constant of motion after conclusion of the laser pulse. It is well
known that the SFA fails to describe ionization for moderately weak
fields as well as the slow electron yield even for strong fields
[28,29]. Since the action does not contain contributions from the
long-range Coulomb forces the ejected electron is subject to.

The release time tðiÞr of trajectory i is determined by the saddle-
point equation,

@Sðt0Þ
@t0

����
t0¼tðiÞr

¼
~kþ~A tðiÞr

� �h i2

2
þ Ip ¼ 0: ð6Þ

yielding complex values since Ip > 0. The condition for different tra-
jectories to interfere is to reach the same final momentum~k to sat-
isfy Eq. (6) with release times tðiÞr ði ¼ 1;2; . . . ; MÞ. In previous
approaches like the SMM [19], we approximated them by real val-
ues by setting Ip ¼ 0, arriving at ~kþ~A tðiÞr

� �
¼ 0. In turn, in the pres-

ent formulation (SPA) we will work with the complex times which
are solution of Eq. (6). Whereas the interference condition involves
the vector potential ~A, the electron trajectory is governed by the
electrical field~F. We now consider an infinite long periodic laser lin-
early polarized along the z axis whose laser field is

~FðtÞ ¼ F0ẑ sinðxtÞ; ð7Þ

where F0 is the field amplitude. Accordingly, the vector potential is
given by

~AðtÞ ¼ F0

x
ẑ cosðxtÞ: ð8Þ

As explained in Ref. [19], there are two solutions of Eq. (6) per opti-
cal cycle. The first solution in the j-th cycle is given by

tðj;1Þr ¼ 2pðj� 1Þ
x

þ 1
x

arccos½�~j�; ð9Þ

where ~j denotes the complex final momentum defined by

~j ¼ jz þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ j2

q

q
ð10Þ

and jz and jq are the cylindrical components of the dimensionless
scaled final momentum of the electron ~j ¼ x~k=F0. In Eq. (10)
c ¼

ffiffiffiffiffiffiffi
2Ip

p
x=F0 is the Keldysh parameter. The second solution fulfills

tðj;2Þr ¼
4p
x j� 1

2

� �
� tðj;1Þr if jz P 0

4p
x ðj� 1Þ � tðj;1Þr if jz < 0:

(
ð11Þ

The complex conjugates of release times of Eqs. (9) and (11) also
satisfy Eq. (6). However the use of either tðj;aÞr or its complex conju-
gates ðtðj;aÞr Þ� will result in the same interference pattern. Complex
SPA release times of Eqs. (9) and (11) become the real release times
fulfilling cosðx tðj;aÞr Þ ¼ �j if we approximate ~j by jz (i.e., c! 0 and
jq ¼ 0) [19]. In Eqs. (9) and (11), tðj;aÞr with a ¼ 1ð2Þ denotes the
early (late) release times within the j-th cycle. Real SMM release
times are shown in Fig. 1. For finite pulse length and hence imper-
fect translation symmetry, the choice of the unit cell is not arbitrary.
If we want to reproduce ionization from an infinite long pulse, we
should preserve the forward–backward symmetry of the momen-
tum distribution. We have chosen the unit cell different for positive
and negative longitudinal momenta kz. This is directly mirrored by
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Fig. 1. Electric field F(t) (left axis) and vector potential A(t) (right axis) of a sine
pulse. The electron emission times for a given final momentum k are marked by
circles ðtðj;1Þr Þ and triangles ðtðj;2Þr Þ. Each optical cycle can be viewed as ‘‘unit cell’’ of
the time lattice. To obtain a symmetric outcome, the ‘‘unit cell’’ is different for
positive and negative values of the vector potential. Each pair of circle and triangle
determines the structure factor F(k) and leads to intracycle interference while the
periodic train of such pairs gives rise to intercycle interference.
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Eq. (11) and Fig. 1. Another possibility is to choose a unique family
of unit cells whose edges coincide with the zeros of the vector po-
tential. In turn, if we extend the sum [Eq. (3)] to M !1, the choice
of the unit cell becomes arbitrary.

For a given value of ~k, the field strength for ionization at tðj;aÞr is

independent of j and a, then F tðj;aÞr

� ��� �� ¼ F0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~j2
p��� ���. The ionization

rate Cð~kÞ ¼ G tðj;aÞr ;~k
� ���� ���2 is identical for all subsequent ionization

bursts (or trajectories) and, therefore, only a function of the

time-independent final momentum ~k provided the ground-state
depletion is negligible. As there are two interfering trajectories
per cycle, the total number of interfering trajectories with final

momentum ~k is M ¼ 2N, with N being the number of cycles in-
volved in the laser pulse. Hence, the sum over interfering trajecto-
ries [Eq. (3)] can be decomposed into those associated with two
release times within the same cycle and those associated with re-
lease times in different cycles [19]. Consequently, the momentum
distribution [Eq. (2)] can be written within the SPA as

dP

d~k

SP

¼ Cð~kÞ
XN

j¼1

X2

a¼1

eiSSP ðtðj;aÞr Þ

�����
�����
2

; ð12Þ

where the second factor on the right hand side of Eq. (12) describes
the interference of 2N trajectories with final momentum ~k, where
tðj;aÞr is a function of ~k through Eqs. (9) and (11).

The semi-classical action along one electron trajectory with re-
lease time tðj;aÞr can be calculated within the SPA from Eq. (5) up to a
constant,

SSP tðj;aÞr

� �
¼ 2Up j ~jj2 þ 1

2

� 	
tðj;aÞr þ

sin 2xtðj;aÞr

� �
4x

þ 2
jz

x
sin xtðj;aÞr

� �" #
;

ð13Þ

where the ponderomotive energy is given by Up ¼ F2
0=4x2, and

j ~jj2 ¼j ~jj2 þ c2 [see Eq. (10)]. The sum in Eq. (12) can be written as

XN

j¼1

X2

a¼1

eiSSP tðj;aÞrð Þ ¼ 2
XN

j¼1

eiSSP
j cos

DSSP
j

2

 !
; ð14Þ

where SSP
j ¼ SSP tðj;1Þr

� �
þ SSP tðj;2Þr

� �h i
=2 is the average action of the two

trajectories released in cycle j, and DSSP
j ¼ SSP tðj;1Þr

� �
� SSP tðj;2Þr

� �
is the

accumulated action between the two release times tðj;1Þr and tðj;2Þr

within the same j-th cycle. The underlying time structure is
schematically illustrated in Fig. 1 within the SMM. There are two
solutions of Eq. (6) per optical cycle: the early release time tðj;1Þr ,
within the first half of the j-th cycle (marked with circles in Fig. 1),
and the late release time tðj;2Þr , within the second half of the j-th cycle
(marked with triangles in Fig. 1). The generalization to the SPA is
straightforward albeit its visualization is more difficult since all re-
lease times tðj;aÞr are complex. Within the SPA (and also the SMM
[19]), the average action depends linearly on the cycle number j,

SSP
j ¼ S0 þ jeS; ð15Þ

where S0 is a constant which will drop out when the absolute value
of Eq. (14) is taken, and eS ¼ ð2p=xÞðEþ Up þ IpÞ. In turn, due to dis-
crete translation invariance in the time domain ðt ! t þ 2jp=xÞ, the
difference of the action DSSP

j is a constant independent of the cycle
number j, which can be expressed (dropping the subindex j) as

DSSP ¼ �2Up

x
ð1þ2j~jj2ÞsgnðjzÞarccosðsgnðjzÞ ~jÞ
h

�ð4jz� ~jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~j2
p i

;

ð16Þ

where sgn denotes the sign function that accounts for positive and
negative longitudinal momentum kz, as discussed before. Eq. (16) is
a generalization of the SMM accumulated classical action of [19]
including now the electron momentum transverse to the polariza-
tion direction kq, within the SPA.

After some algebra, Eq. (12) can be rewritten as an equation of a
diffraction grating of the form

dP

d~k

SP

¼ 4Cð~kÞ cos2 DSSP

2

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Fð~kÞ

sinðNeS=2Þ
sinðeS=2Þ

" #2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
BðkÞ

; ð17Þ

where the interference pattern can be factorized into two contribu-
tions: (i) the interference stemming from a pair of trajectories with-
in the same cycle (intracycle interference), governed by Fð~kÞ, and (ii)
the interference stemming from trajectories released at different
cycles (intercycle interference) resulting in the well-known ATI
peaks given by B(k) (see Ref. [30]). The intracycle interference arises
from the superposition of pairs of trajectories separated by a time
slit Dt ¼ tðj;1Þr � tðj;2Þr of the order of less than half a period of the laser
pulse (see Fig. 1), i.e., RðDtÞ < p=x, giving access to emission time
resolution of K 1 fs (for near IR pulses), while the difference be-
tween tðj;aÞr and tðjþ1;aÞ

r is 2p=x, i.e., the optical period of the laser.
It is worth to note that whereas the intracycle factor Fð~kÞ depends
on the angle of emission, the intercycle factor B(k) depends only
on the absolute value of the final momentum (or energy). Eq. (17)
is structurally equivalent to the intensity for crystal diffraction:
the factor Fð~kÞ represents the form (or structure) factor accounting
for interference modulations due to the internal structure within
the unit cell while the factor B(k) gives rise to Bragg peaks due to
the periodicity of the crystal. Therefore, B(k) in Eq. (17) may be
viewed as a diffraction grating in the time domain consisting of N
slits, whereas Fð~kÞ is the diffraction factor for each slit.

We will analyze in the following how the interplay between B(k)
and Fð~kÞ controls the doubly differential distribution of direct ATI
electrons. First, we analyze the intracycle interference arising from
the superposition of two trajectories released within the same opti-
cal cycle, i.e., a ¼ 1;2 and N ¼ 1 in Eq. (12) or, equivalently,
4Cð~kÞFð~kÞ, since BðkÞ ¼ 1 in this case. We plot the doubly differen-
tial momentum distribution in Fig. 2(a). The intracycle interference
pattern gives approximately vertical stripes which bend as the
transverse momentum grows. The stripes with higher longitudinal
momenta are wider than the ones with lower longitudinal momen-
ta. In order to analyze the intercycle interference, we isolate this
interference pattern by setting the intracycle factor to be Fð~kÞ ¼ 1
and N ¼ 2 in Eq. (17). The factor B(k) reduces to the two-slit Young
interference expression BðkÞ ¼ 4 cos2½p=xðEþ Up þ IpÞ� whose



Fig. 2. SPA doubly differential momentum distribution of Eq. (17). (a) Intracycle
interference: 4Cð~kÞFð~kÞ, (b) intercycle interference: 4Cð~kÞBð~kÞ for N ¼ 2, (c) total
interference (intra- and intercycle interference): 4Cð~kÞFð~kÞBð~kÞ for N ¼ 2, and (d)
total interference for N ¼ 3 in dark gray (red and blue) superimposed to the
intracycle interference pattern of (a) in light gray (green). The laser parameters are
F0 ¼ 0:0675 and x ¼ 0:05. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 3. SPA photoelectron spectrum of Eq. (18) showing (a) Intracycle interference:
setting Bð~kÞ ¼ 1, (b) intercycle interference: setting Fð~kÞ ¼ 1, for N ¼ 2 cycles, and
(c) total (intra- and intercycle) interference. In (c) we add the intracycle modulation
(multiplied by 4) of (a).

D.G. Arbó et al. / Nuclear Instruments and Methods in Physics Research B 279 (2012) 24–30 27
maxima are centered at the ATI energies En ¼ nx� Up � Ip in
agreement with the conservation of energy in the absorption of n
photons. We plot the corresponding doubly differential momentum
distribution in Fig. 2(b), where we can observe concentric rings
with radii of kn ¼

ffiffiffiffiffiffiffiffi
2En
p

. The complete pattern stemming from all
four interfering trajectories in a two-cycle pulse, the composition
of the intracycle and intercycle interference patterns of Fig. 2(a
and b) gives the momentum distribution of Fig. 2(c). The intercycle
rings are modulated by the intracycle pattern (or vice versa). If we
consider longer pulses, the intercycle factor B(k) will increase in
contrast as N increases. For example, the ATI rings will become
narrower and N � 2 secondary rings will appear between two
consecutive principal ATI rings. This effect can be observed in
Fig. 2(d) for N ¼ 3 cycles, where a secondary ring N � 2 ¼ 1 is visi-
ble. On the other side, the intracycle factor Fð~kÞ is independent of
the number of cycles N involved in the laser pulse and, in conse-
quence, the intracycle interference pattern remains unchanged.
This is observed in Fig. 2(d), where we have superimposed the
doubly differential momentum distribution for N ¼ 3 cycles with
the intracycle pattern of Fig. 2(a), showing that the intracycle
modulation is the same for N = 1,2, and 3 cycles.

One of the questions that arises is how the interference pattern
is mirrored in the photoelectron spectrum. In other words, does the
factorization into intra- and intercycle interference survive in the
energy distribution? From Ref. [19] we know that within the 1D
SMM the answer is affirmative. In order to calculate the photoelec-
tron spectrum from our three-dimensional SPA, we need to
integrate over the angle of emission h,
dP
dE
¼ 2p

ffiffiffiffiffiffi
2E
p Z 1

�1

dP

d~k

� 	
dðcos hÞ ¼ 8p

ffiffiffiffiffiffi
2E
p

BðkÞ
Z 1

�1
Cð~kÞFð~kÞdðcos hÞ:

ð18Þ

In the last equation we have used Eq. (17) and the fact that B(k) is
only a function of the absolute value of the momentum ~k and
becomes a constant factor outside the angular integral. The intercy-
cle factor B(k) responsible for the ATI peaks will be modulated by
the integral of Eq. (18). In Fig. 3(a) we show the photoelectron spec-
trum due to the interference of only two trajectories released with-
in the same unit cell. In this case, only intracycle interference is
present ðBðkÞ ¼ 1Þ. If we want to isolate the intercycle interference,
we set Fð~kÞ ¼ 1 in Eq. (18), which is shown in Fig. 3(b) for the case
N ¼ 2. Thus, the factorization partially survives in the 3D SPA:
whereas the intercycle interference is completely factorized in Eq.
(18), the intracycle interference represented by the factor Fð~kÞ is
modulated by the ionization rate Cð~kÞ. The whole photoelectron
spectrum given by Eq. (18) is displayed in Fig. 3(c). We observe that
the ATI peaks stemming from the intercycle interference is modu-
lated by the intracycle interference pattern of Fig. 3(a). It is worth
to point out that in low-energy resolution experiments ATI peaks
will be mostly washed out and only the intracycle interference pat-
tern will survive.
3. Probing the SPA

In order to probe the predictions of the SPA, we perform quan-
tum calculations employing the time-dependent distorted wave
theory in two variants: the Coulomb–Volkov approximation
(CVA) and the strong field approximation (SFA) [23,25,3,7] and also
the numerical solution of the full TDSE for identical laser field
parameters.



(c)

ig. 4. Doubly differential momentum distributions calculated within (a) the SPA,
) SFA, (c) CVA, and (d) TDSE. Same laser parameters as Fig. 2. In (b)–(d) there is
¼ 1=2 cycle involved in the ramp on and m0 ¼ 1=2 in the ramp off.
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Briefly, within the time-dependent distorted wave theory [31],
the transition amplitude in the post form is expressed as

Tif ¼ �i
Z þ1

�1
dt v�f ðtÞjzF ðtÞ j /iðtÞ
D E

; ð19Þ

where v�f ðtÞ is the final distorted-wave function and the initial state
/iðtÞ is an eigenstate of the atomic Hamiltonian without external
perturbation. The CVA results from combining the atomic eigen-
state of the continuum /�~k with the solution of a free electron in
the time-dependent electric field vðVÞ�~k

ð~r; tÞ. For a hydrogenic atom
with nucleus charge ZT , this results in the Coulomb–Volkov final
state [32,33,35,34,36–38]

vðCVÞ�
~k
ð~r; tÞ ¼ vðVÞ�~k

ð~r; tÞ DCðZT ;
~k;~rÞ; ð20Þ

where DCðZT ;
~k;~rÞ ¼ N�T ðkÞ1F1ð�iZT=k;1;�ik r � i~k �~rÞ, the Coulomb

normalization factor is equal to N�T ðkÞ ¼ expðpZT=2kÞCð1þ iZT=kÞ,
and 1F1 denotes the confluent hypergeometric function. In Eq.
(20), vðVÞ�~k

ð~r; tÞ is given by [27]

vðVÞ�~k
ð~r; tÞ ¼ exp½ið~kþ~AÞ �~r�

ð2pÞ3=2 exp½iSðtÞ�; ð21Þ

where S(t) is the action of Eq. (5). In the CVA, the simultaneous
interactions of the released electron with the residual ionic core
and the external field are taken into account non-perturbatively,
yet approximately. From Eq. (20), the SFA can be derived as the limit
of weak Coulomb potential, i.e., vðCVÞ�

~k
! vðVÞ�~k

of Eq. (21) as ZT ! 0.
Within the SFA, the influence of the atomic core potential on the
continuum state of the receding electron is neglected and, therefore,
the momentum distribution is a constant of motion after conclusion
of the laser pulse. We also solve the full TDSE numerically without
any approximation for the hydrogen atom [39,29,40,41]. The
numerical solution of the TDSE is considered to be exact within
numerical accuracy.

In order to calculate the electron yield within the SFA, CVA, and
the TDSE, we must consider a finite pulse. We include an envelope
function f(t) and a carrier-envelope phase /CE in the definition of
the laser field

FðtÞ ¼ f ðtÞ sinðxt þ /CEÞ: ð22Þ

For the pulse of Eq. (22), we use an N-cycle flat-top pulse with
m- and m0-cycle linear ramp-on and -off, respectively,

f ðtÞ ¼ F0

xt
2pmþ 1
� �

if �2mp
x 6 t < 0

1 if 0 6 t < 2Np
x

2ðNþm0 Þp�xt
2pm0 if 2Np

x 6 t < 2ðNþm0 Þp
x :

8><>: ð23Þ

The important point to note is that for N an integer, /CE ¼ 0, and m
and m0 integer or half-integer numbers, f ðtÞ ¼ F0 [see Eq. (23)] and
the vector potential is given by Eq. (8) in the flat-top region. Conse-
quently, in this case the complex ionization times within the SPA
can be calculated from Eqs. (9) and (11). The envelope function
introduced in Eq. (23) assures that the intracycle interferences char-
acteristic for many cycles are independent of the number of cycles
the envelope covers in the flat top region.

In Fig. 4 we plot the SFA, CVA, and TDSE doubly differential
momentum distributions of ejected electrons from hydrogen
atoms ðZT ¼ 1Þ due to a laser field given by Eqs. (22) and (23) for
N ¼ 3. Hereinafter, in order to minimize the contribution of the
ionization during the ramp on and off, we consider m ¼ m0 ¼ 1=2.
We compare them with the analytical solution of the SPA
[Fig. 4(a)], which exhibits the characteristic multiphoton
iso-energy rings corresponding to ATI peaks in the photoelectron
spectrum and also one secondary ring between two consecutive
main rings given by the principal and secondary maxima of B(k)
in Eq. (17). The multiphoton rings are modulated by the intracycle
F
(b
m

pattern given by the factor Fð~kÞ in Eq. (17). For the quantal dis-
torted wave SFA we observe in Fig. 4(b) that not only the both
interference inter- and intracycle patterns are present but also
the position of the intercycle rings and intracycle modulations
are the same as in the SPA. This fact proves the power of the pres-
ent SPA to reproduce the ionization process of direct electrons.
When we compare the SPA and SFA with the CVA of Fig. 4(c), we
observe few changes due to the effect of the Coulomb potential
of the remaining ion on the escaping electron. First, the whole dis-
tribution is more concentrated near the polarization axis ðkq ¼ 0Þ
due to Coulomb focusing. Second, we observe the emergence of a
bouquet-shape structure near threshold which is a direct conse-
quence of the quantum interference of electron trajectories follow-
ing hyperbolic trajectories explained as generalized Ramsauer–
Townsend diffraction [12]. Third and most importantly, the intra-
cycle pattern is shifted toward the origin. On the other hand, the
position of the intercycle ring pattern is shown to be insensitive
to the action of the Coulomb potential. If we compare the approx-
imate theories SPA, SFA, and CVA with the exact solution of the
TDSE in Fig. 4(d), we observe that the intercycle rings are still vis-
ible. We can see the intracycle interference pattern at 0 < kq < 0:2,
though blurred, and it agrees well with the CVA.

We also compare the photoelectron spectrum [see Eq. (18)] cal-
culated within the SPA in Fig. 5(a) with the corresponding result
for the SFA in Fig. 5(b). As in Fig. 4, one secondary peak between
two consecutive principal ATI peaks corresponding to the intercy-
cle factor B(k) appears. Multiphoton peaks are modulated by the
intracycle interference pattern of Fig. 3(a). As the ionization rate
is different in SFA and SPA, the fall of ionization probability as
the energy increases is different as well and, therefore, the position
of the peaks of the intracycle modulation differs (some of them
marked with vertical arrows). The additional shift observed in



Fig. 5. Photoelectron spectrum calculated within the (a) SPA, (b) SFA, (c) CVA, and
(d) TDSE. The vertical arrows indicate the top of the intracycle modulations. Same
laser parameters as Fig. 4.

Fig. 6. TDSE doubly differential momentum distributions for the electric field of
Eqs. (22) and (24) (a) two, (b) four, and (c) eight. Same laser parameters as Fig. 2.

Fig. 7. TDSE photoelectron spectrum calculated for the electric field of Eqs. (22) and
(24) (a) two, (b) four, and (c) eight. Same laser parameters as Fig. 2. The vertical
arrows in (b) indicate the top of the intracycle modulations. Same laser parameters
as Fig. 6.
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the CVA (Fig. 5c) stems from the effect of the Coulomb potential of
the nuclear charge on the intracycle interference pattern, i.e., the
Coulomb potential shifts the intracycle modulations towards lower
kinetic energies. In Fig. 5(d), each ATI intercycle peak in the TDSE
photoelectron spectrum displays a double-peak structure. This
ATI peaks splitting is a consequence of Rabi oscillations among
bound field-dressed states known as Autler–Townes doublets
[42,43].

At this stage, one question naturally arise: would the intracycle
pattern superimposed to the intercycle pattern be observable
when using more realistic pulses? In order to answer this question
we consider in Eq. (22) a smooth envelope function of the form:

f ðtÞ ¼ F0 sin2 pt
s

� 	
; 0 6 t 6 s; ð24Þ

and zero elsewhere. In Eq. (22), the carrier-envelope phase is cho-
sen to be uCE ¼ �p=2, so that we deal with cosine-like pulses.

We investigate on how the modulations from the intracycle
interferences are expected to vary with the pulse length, i.e., the
total number of cycles involved. In this line, in Fig. 6 we show
the TDSE calculations for the doubly-differential momentum dis-
tribution with a (a) two-, (b) four-, and (c) eight-cycle cosine-like
pulse of Eqs. (24) and (22). In Fig. 6(a) we observe two types of
interferences: whereas in the kz > 0 region Ramsauer–Townsend
radial fringes are observed [12], in the kz < 0 region a set of rather
vertical intracycle fringes are observed [10]. This rich angular pat-
tern in the two-dimensional electron momentum distribution is
not mirrored in the photoelectron spectrum of Fig. 7(a) where a
smooth energy dependence appears. This is due mainly to the large
central peak of the electric field as seen in the inset of Fig. 3 of [10].
When we increase the pulse duration to a total number of cycles
equal to four a more symmetric momentum distribution (around
kq ¼ 0) is observed. In this case, intracycle fringes are observed
for positive and negative kq. Essentially the same pattern is present
in Fig. 6(c) for an eight-cycle pulse. In this last case the intercycle
rings are more visible. When we observe the corresponding photo-
electron spectra in Fig. 7(b) we observe not very clear intercycle
peaks modulated with the intracycle pattern pointed out with ver-
tical arrows. The position of the intercycle modulations do not
change for the eight-cycle pulse in Fig. 7(c), but the contrast of
the intercycle peaks is much higher. In this way we can conclude
that also for pulses with smooth envelopes the intracycle pattern
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is rather independent of the pulse length. Sine-like pulses produce
similar results (not shown) except for very short pulses, i.e., two
cycles [10]. We must point out that in the TDSE calculations also
other effects like the interference with rescattering electron wave
packets and the contribution from Rydberg states are present,
making the study of the electron yield in terms of a diffraction
grating with both intra- and intercycle interference more difficult
to visualize.

4. Conclusions

We have presented a study of interference effects observed in
the direct ionization of atoms subject to multi-cycle laser pulses.
In the framework of the SPA we have generalized a previous study
[19] restricted to a 1D SMM model to describe the full differential
electron distribution. We identify the interplay between the
intra- and intercycle interferences of electron trajectories in photo-
electron 3D momentum distribution by multicycle laser pulses.
Intercycle interference arises from the superposition of wave pack-
ets released during different optical cycles and corresponds to iso-
energy ATI rings in the doubly differential momentum distributions
whereas intracycle interference comes from the coherent superpo-
sition of electron wave packets released within the same optical
cycle. An analytical expression for the complete doubly differential
interference pattern is presented showing an excellent agreement
with the numerical calculations. The intracycle interference modu-
lation is independent of the total number of optical cycles involved
in the laser pulse but is affected by the long-range atomic Coulomb
potential as CVA results show. The observation of sub-cycle ioniza-
tion dynamics should become accessible for multi-cycle pulses and
in low-resolution spectra.
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[36] D.V. Milošević, F. Ehlotzky, Phys. Rev. A 58 (1998) 3124.
[37] A. Jaron, J.Z. Kaminski, F. Ehlotzky, Phys. Rev. A 61 (2000) 023404.
[38] C. Figueira de Morrison Faria, H. Schomerus, W. Becker, Phys. Rev. A 66 (2002)

043413.
[39] X.-M. Tong, S. Chu, Chem. Phys. 217 (1997) 119.
[40] T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 62 (2000) 032706.
[41] B.I. Schneider, L.A. Collins, J. Non-Cryst. Solids 351 (2005) 1551.
[42] S.H. Autler, C.H. Townes, Phys. Rev. 100 (1955) 703.
[43] V.D. Rodrı́guez, Nucl. Instr. Meth. Phys. Res. B 247 (2006) 107.


	Doubly differential diffraction at a time grating in above-threshold ionization:  Intracycle and intercycle interferences
	1 Introduction
	2 Theory
	3 Probing the SPA
	4 Conclusions
	Acknowledgements
	References


